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Concept 

One of the grand challenges of twenty-first-century materials science is the rational design of new 
materials, where given a desired material functionality, the material structure is predicted; and for that 
particular structure, we can design appropriate constituents and assembly processes. To address this 
challenge, it is critical to understand the relationships between constituents, processing, and resultant 
materials structure and function. With the needs for material functionality becoming more diverse, 
stringent and sophisticated, the complexity of materials continues to increase. The relevant parameter 
space expands correspondingly, arising from both the multi-com  ponent nature of functional materials 
and a multitude of processing conditions. All this implies that optimizing functionality requires strategic 
exploration of the vast parameter space that is associated with complex materials. To meet this 
challenge, the way we investigate materials needs to evolve, to become more efficient and intelligent. 

An emerging paradigm to address this complexity is autonomous experimentation, wherein 
experimental synthesis and data collection are automated, and machine-learning algorithms are used to 
select experiments to conduct based on the evolving dataset. Implemented properly, these methods 
enable intelligent exploration of the enormous parameter spaces of materials science—that is, every 
single sample synthesis and measurement step is selected so as to yield maximal value (scientific insight) 
such that one can iterate towards a desired material property, or a answer a desired scientific question, 
as rapidly as possible. 
Recent work 

Brookhaven National Laboratory 
has focused on developing these 
concepts and deploying them in the 
context of x-ray scattering, which is a 
powerful and rapid probe of material structure that can even measure materials in-situ (as they are 
being synthesized or processed). In this work, we have developed analytic1, 2 and deep learning3-7 
methods for classifying or healing8, 9 x-ray scattering datasets, and algorithms for optimal decision-
making in an experimental context. We have demonstrated how physics-informed deep learning can 
deliver substantial performance improvements. For instance, we created a multi-channel convolution 
neural network in which initial data transformations are carefully selected by domain experts to 
highlight features of interest. For x-ray scattering data, decomposing the raw detector image into a 
matrix of Fourier-Bessel coefficients efficiently highlights symmetry information in the raw signal. 

When these methods are combined and deployed at a synchrotron x-ray scattering beamline, they 
enable the instrument to autonomously explore material science problems. For instance, the beamline 
was able to efficiently image the structure of a nanoparticle thin film, where it first measured a low-
resolution (coarse) image of the sample makeup, and then selected follow-up experiments so as to 
achieve higher imaging resolution in areas of interest (especially edges in the image). In another set of 
experiments, the beamline autonomously measured a large set of sample (using robotics to select 
samples from a queue) and was able not only to measure these samples in an efficient ordering, but also 
to suggest what follow-up samples should be synthesized next. Finally, this research program has 
demonstrated how these methods can be combined with combinatorial sample preparation. For 
instance, sample libraries can be synthesized by creating continuous gradients (of, e.g., composition); 
subsequent autonomous study allows these spaces to be mapped efficiently. 
 



Future Needs 
A key route towards improvement of 

the autonomous experimentation 
paradigm is to enable input of known 
material physics. This existing 
understanding both constrains the 
exploration problem, providing initial 
estimates of material behavior for 
guiding exploration, and also provides a 
framework into which newly-acquired 
data can be fit. Materials physics can be captured by appropriate simulation tools, such as molecular 
dynamics or field theories. However, materials models are typically computationally expensive, 
especially when they are attempting to capture the non-equilibrium aspects of realistic materials, and 
must thus explicitly simulation material evolution. Thus, a key challenge in the integration of materials 
models into autonomous workflows is to merge high-performance computing into a real-time 
experimental context. 

Progress will require developments along three key vectors: 
1. Software platforms that allow one to seamlessly integrate different computation inputs. In 

particular, the ability for experiments to select from a menu of decision-making algorithms, and 
to easily accept input from arbitrary materials modeling code. 

2. New models of materials physics must be developed that provide reasonable predictive power 
while being computationally tractable. Machine-learning approximants can be trained based on 
the outputs of rigorous models. Ideally infrastructure would be developed to connect models of 
different fidelity, allowing both rapid input from approximants, as well as intermittent input from 
expensive models. 

3. Infrastructure to enable timely (i.e. during experimentation) access to significant computing 
power, through connecting to existing HPC clusters, or by accessing novel distributed resources. 
Access must be rapid and elastic, able to handle the inconsistent and ‘bursty’ nature of 
experimental data collection, while also scaling favorable to handle the changing complexity of 
the underlying physics models. 

Outlook 
Autonomous experimentation has the potential to radical transform scientific study, by liberating 

human scientists to focus on high-level conceptual understanding, while having scientific instruments 
automatically handle sample management, processing, and high-speed decision-making. In the future, 
this paradigm must leverage large computational resources in order to provide real-time inputs from 
computationally-expensive materials modeling. New cyber infrastructure is critically required to enable 
timely and cost-effective access to elastic computing resources. 
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