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Example of Big
Data in
Science

Large Hadron

Collider: to find the
God particle

15 PB per year — sensors capable of
| 40PB/s

27 km tunnel

~10,000 superconducting magnets
* Operating temperature 1.9 Kelvin

Construction cost:
US$9Billion
* Power consumption: ~120 MW
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Typical Event Figures

# members | Date of [# events/ | volume/year-
Experiment | /institutions | first data [Y€ar B
STAR 350/35 2001 1 08_1 09 500
PHENIX 350/35 2001 109 600
BABAR 300/30 1999 1 09 80
CLAS 200/40 1997 1 010 300
ATLAS | 1200/140 | 2008 14° 5000
STAR: Solenoidal Tracker At RHIC
RHIC: Relativistic Heavy lon Collider
LHC: Large Hadron Collider A mockup of
InCIUdeS: ATLAS, CMS, - An “event”
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What are the indexing challenges?

L Generate large amounts of raw data — referred to as “events”
< Collected from simulations and experiments
O Post-processing of data
<> Identify elements in data (find particles produced, tracks)
<> generate summary variables per event
O e.g. momentum, no. of pions, transverse energy
o Number of variables is large (50-100)
O Analyze data
<> use summary variables to characterize events
<> extract subsets from the large dataset

o Need to access events based on partial
variable specification (range queries)

o e.g (0.1 <AVPT <0.2) A (10 < Np < 20)) v (N > 6000)
1 Challenges

<> Search over billions of events

< Multi-variable search, but only over a subset of the variable

< Type of query: a needle-in-the-haystack

<> Another type of query: larger subsets for statistical properties
<> Search over numerical values (integers, floating point)

April, 2013



Combustion simulation example

1 Combustion simulation: 1000x1000x 1000 mesh with 100s of chemical species over
1000s of time steps — 10'* data values

L This is an image of a single variable
(temperature)

J What’s needed is search over
multiple variables, such as:

Temperature > 1000
AND pressure > 106
AND HO2 > 107 AND HO2 > 10-¢

O Challenges

L Multi-variable queries from a
subset of variables

L Search over numerical values

O Identify large number of regions
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Gene functional annotation

Sequence similarity

Gene context provide information for the function of genes.

Functionally related genes are frequently found in the same
chromosomal neighborhood.

* (Cassette Definition
* Parallel or Divergent orientation
 Distance < 300nt

- -

50nt 350nt
50nt 250nt
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Conserved chromosomal cassettes

* Genes are replaced by protein families (COGs, pfams, IMG ortholog
families). One gene - multiple families.

* We refer to these as “properties”, such as “cog0087 cog0088
cog0089 pfam00181 pfam00189 pfam00203 pfam00237”
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Boxes that share two cassettes and two genes, if the genomes are
distant phylogenetically (more than species)

E.g. for black box: blue and red are 15t step relatives.
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Why is this problem hard!?

1 Size

<> 100 million cassettes, with properties from about 25,000 possible values
(currently).

<> Total number of elements: 2.5 x 10!2
Challenge
U Query types

<> Given a cassette find all cassettes that have the same properties in
common

o That is a massive multi-value search

<> Given a cassette find all cassettes that have 2-or-more properties in
common (in general k-or-more)

o Explosive search of all possible combinations of 2-or-more
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Big Data Indexing Requirements

(1 Speed of search

<> Search over billions — trillions data values in seconds

 Multi-variable queries

<~ Be efficient for combining results from individual variable search results
1 Size of index
<> Index size should be a fraction of original data

1 Granularity

<~ Ability to produce smaller indexes when granularity can be reduced, such as |
decimal points, for example

 Parallelism
<> Should be easily partitioned into sections for parallel processing

(] Speed of index generation

< For in situ processing, index should be built at the rate of data generation

April, 2013 10



Scaling simulations generates
a data volume challenge (PBs)

Archive
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What Can be Done!?

L Perform some data analysis and visualization on simulation machine (in-situ)
L Reduce Data and prepare data for further analysis (in-situ)

Simulation Site Analysis Site (i)

Analysis
Machine

Simulation Machine
+ Data Reduction and Indexing
+ Analysis and Visualization
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Data Analysis

1 Two fundamental aspects

<> Pattern matching: Perform analysis tasks for finding known or expected
patterns

<> Pattern discovery: Iterative exploratory analysis processes of looking for
unknown patterns or features in the data
[ Ideas for the analysis of Big Data
<> Perform pattern matching tasks in the simulation machine
o “In situ” analysis

<> Prepare data for pattern discovery on the simulation machine, and perform
analysis on mid-size analysis machine

o “In-transit” data preparation

o “Off-line” data analysis

April, 2013 13



Index:
A Data Structure for Accelerating Data Accesses

 Tree-based indexes
<> E.g. family of B-Trees
<> Commonly used database management systems
<~ Sacrifice search efficiency to permit dynamic update

( Multi-dimensional indexes
< E.g. R-tree, Quad-trees, KD-trees, ...
< Don’t scale for large number of dimensions
<> Are inefficient for partial searches (subset of attributes)

1 Hashing

<> Predictable performance
< Good for locating individual data records

1 Bitmap indexes:
< Good for read-mostly data
< Handle partial range queries efficiently
<> May have trouble handling data with a large number of distinct values

April, 2013



index for each variable

* Take advantage that index need to be is append only

Iitmap

B

* Generate a bitmap for each possible value of each variable

* (e.g. for 0<Np<300, have 300 bitmaps)
« compress each bit vector (some version of run length encoding)

* Need to touch only bitmaps for the specified search

variable n

variable 2

variable 1
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Basic Bitmap Index

Easy to build: faster than building B-trees

Data by by b, by by bs Efficient for querying: only bitwise logical
values =0 =l =2 =3 =4 =5 operations
0 [1 (0] 10| 10! 0] 10 * A<2-5>b,0ORD,
- A>2->b,0Rb,ORDb
| 0| |I| |0| 0] 0| |0 . 3oL AT .
« Efficient for multi-dimensional queries
5 Of (0| (0| (0| (O] | « Use bitwislse opelzrations to combine
the partial results
3 0110119, 111 19 0 « Size: one bit per distinct value per object
] Ol || [0f |0 0| O »  Definition: Cardinality == number of
2 ol lol 111 1ol lol lo distinct values
* Need to control size for high
0 [{ 10] 10] (O |0] |0 cardinality attributes
4 ol 1ol 1ol 101 |1 |0 * Main idea:
ol 111 lol lol lo!l lo * highly efficient compression method
I « Compute friendly — can perform
0372—0 QW operations directly on compressed

data
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FastBit properties — highly efficient and

April, 2013

compact

Main idea:

< Invented specialized compression methods (was patented) that:
o Can perform logical operations directly on compressed bitmaps
o Excels in support of multi-variable queries

o Can partition and merge bitmaps without decompression -
essential for parallelization of indexes

FastBit takes advantage of append only data to achieve:
< Search speed by 10x — 100x than best known bitmap indexing methods

< On average about I/3 of data volume compared to 2-3 times in
common indexes because of compression method

< Proven to be theoretically optimal — data search time is proportional
to size
of the result

Usage
< In multiple scientific application in DOE
< Embedded into in situ frameworks

< Thousands of downloads around the world (open source under
source forge), including commercial companies



Methods to Improve Bitmap Index

] Compression
<> FastBit compression method:Word-Aligned Hybrid (WAH) code

<> 10x speedup over Byte-aligned Bitmap Code
4 Encoding

<> Multi-level encoding
<> Reduce bitmaps needed for a query
<> 5x speedup
d Binning
<> Some times we choose to use bins at the fine level to reduce index size
<> Problem: if query falls in the middle of edge bins
<> Solution: Order-preserving Bin-based Clustering (OrBiC)
<> 5x speedup for searching bins

April, 2013 18



Improving Bitmap Indexes: Multi-Level Encoding

1 The finest-level may be precise or
binned

(1 Coarse levels are always binned

1 Each coarse bin contains a number
of fine bins/values

1 Queries can be processed with a
combination of coarse and fine
bitmaps

1 Only edge bins need to be resolved
at the fine level

1 Analysis revealed how to construct
the coarse level in order to reduce
the query processing time

April, 2013
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[Wu, Shoshani and Stockinger 2010]
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Two Levels Are Better Than One

[ Prove theoretically that
the second level needs
to have only a small
number of bins (15 ~
50 depending on data) .

 Only two levels are
necessary

( Result: 5< speedup on
average (over WAH
compressed |-level
index)

query response time (sec)

[Wu, Shoshani and Stockinger 2010]
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Domain-Specific Challenges — current
and future

[ Generate index at the rate of data generation in situ
<> Increase level of parallel processing

<> Perform partial index generation per node
<> Take advantage of local NVRAM

(] Adapt indexing methods to a variety of data models

<> Irregular grids, geodesic meshes, toroidal meshes

o How to linearize the space

<> Multi-level grid, such as adaptive-mesh-refinement (AMR)
[ Use results of index in subsequent operations

<~ Statistical summaries

<> Region growing, region overlaps, ...
(] Adapt indexing to specialized operations

<> Searches for k-or-more matches
<> Searches based on formulas (plug-in-codes)

April, 2013 21



FastBit in support for Query-Driven

April, 2013

Visualization

Collaboration between SDM and Vis groups
Use FastBit indexes to efficiently select the most interesting data for visualization

Example: laser wakefield accelerator simulation

VORPAL produces 2D and 3D simulations of particles in laser wakefield

Finding and tracking particles with large momentum is key to design the accelerator

Brute-force algorithm is quadratic (taking 5 minutes on 0.5 mil particles), FastBit time is
linear in the number of results (takes 0.3 s, 1000 X speedup)

Request Histograms

FastBit

A

A

2D Histograms

>
Context
2D Histograms . - : - -

Focus

Define Condition p@l‘ Thresholds / Id's
Selected Data b—

Select and Trace
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FastBit adaptation to toroidal meshes

- Extended FastBit indexing capability to search for
regions of interest defined on toroidal meshes used
for fusion simulations

« Developed algorithms to take full advantages of the
regularity present in the magnetic coordinates but
not in the Cartesian coordinates

« Much more compact than the general connectivity
graph: ~ 200 numbers vs. 6 million numbers

« Labeling query lines using magnetic coordinates is

600-1000 x faster than using connectivity graph —
g y grap 7 ——
« Developed new Connected Component Labeling / > -5
algorithm Q(/ —
\ \\‘\\ ~ // v

- Recently used in Atmospheric Rivers project
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Adapting to cassette searches

Results: (1) given a cassette, search all cassettes with the same properties

Done in about 0.07 second (using vertical bitmaps)

(2) Find similar cassettes with 2 or more properties

Done in about 10-15 seconds (using horizontal bitmaps)
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Flame Front Tracking in Combustion

Challenges

R T
« & *\ <>Cell identification
Ry <Identify all cells that satisfy
My ..k'. g "h&z 3 b‘ﬂiﬁ I ”ﬁi

range conditions
ETFEEE5EﬁEiiﬁ@?ﬁE&ﬁ&EﬁEﬁﬁ&iéﬁ%ﬁ%‘
e

T 9eqge0522090 seatssss 2392280092 M <-Region growing
= ¥ / MR

T

A <Connect neighboring

y! cells into regions

<>Region tracking

<>Track the evolution of
the features through time
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Big Data Indexing Requirements:

Bitmap indexing advantage
 Speed of search

< Search over billions — trillions data values in seconds
o Yes, with compute-friendly compression
 Multi-variable queries

<> Be efficient for combining results from individual variable search results
o Yes, combining results for each variable as bitmaps is very efficient

(1 Size of index

<> Index size should be a fraction of original data
o Yes, compression of bitmap index is essential
O Granularity

<> Ability to produce smaller indexes when granularity can be reduced, such as 2 decimal
points, for example

o Yes, binning over multiple values proved very effective
O Parallelism
<> Should be easily partitioned into sections for parallel processing
o Yes, if compressed bitmaps can be easily combined (WAH has this property)
 Speed of index generation

<> For in situ processing, index should be built at the rate of data generation
o OK for billions of values, but a trillion value index took |0 minutes (still a challenge)
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Architectural Changes that Could Benefit in
situ indexing

LJ NVRAM on each node

<> Can be used to build partial indexes over multiple time steps

<> Can be used to accelerate in-situ index generation

(] Take advantage of GPUs

<> Assign index generation for each variable to separate GPUs

(J NVRAM between machine and storage system

<> Can be used for generating indexing for post-processing while data is
streaming out to be stored on disk

April, 2013 27
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