
On the Role of Indexing for Big
Data in Scientific Domains	

Arie Shoshani	

Lawrence Berkeley National Lab	

BIGDATA and EXTREME-SCALE COMPUTING	

April 30-May 1, 2013	

Outline	

q Examples of indexing���
 needs in scientific domains	

q  Scientific Indexing���
 requirements	

q Bitmaps indexing as a���
 promising technology	

2	

April, 2013	

Example of Big
Data in
Science���
���
Large Hadron
Collider: to find the
God particle	

•  15 PB per year – sensors capable of
140PB/s	

•  27 km tunnel	

•  ~10,000 superconducting magnets	

•  Operating temperature 1.9 Kelvin	

•  Construction cost:	

US$9Billion	

•  Power consumption: ~120 MW	

3	

April, 2013	

Typical Event Figures	

April, 2013	

 4	

STAR: Solenoidal Tracker At RHIC
RHIC: Relativistic Heavy Ion Collider

LHC: Large Hadron Collider
Includes: ATLAS, CMS, …

Experiment
members
/institutions

Date of
first data

events/
year volume/year-

TB
STAR 350/35 2001 10 8 -10 9 500
PHENIX 350/35 2001 10 9 600
BABAR 300/30 1999 10 9 80
CLAS 200/40 1997 10 10 300
ATLAS 1200/140 2008 10 10 5000

A mockup of
An “event”

What are the indexing challenges?	

q  Generate large amounts of raw data – referred to as “events”	

²  Collected from simulations and experiments	

q  Post-processing of data	

²  Identify elements in data (find particles produced, tracks)	

²  generate summary variables per event	

o  e.g. momentum, no. of pions, transverse energy	

o  Number of variables is large (50-100)	

q  Analyze data	

²  use summary variables to characterize events	

²  extract subsets from the large dataset	

o  Need to access events based on partial ���
variable specification (range queries)	

o  e.g. ((0.1 < AVpT < 0.2) ^ (10 < Np < 20)) v (N > 6000)	

q  Challenges	

²  Search over billions of events	

² Multi-variable search, but only over a subset of the variable	

²  Type of query: a needle-in-the-haystack	

²  Another type of query: larger subsets for statistical properties	

²  Search over numerical values (integers, floating point)	

April, 2013	

 5	

Combustion simulation example	

q  Combustion simulation: 1000x1000x1000 mesh with 100s of chemical species over

1000s of time steps – 1014 data values	

April, 2013	

 6	

q  This is an image of a single variable���
(temperature)	

q  What’s needed is search over���
multiple variables, such as:	

 Temperature > 1000���
AND pressure > 106���
AND HO2 > 10-7 AND HO2 > 10-6	

q  Challenges	

q  Multi-variable queries from a

subset of variables	

q  Search over numerical values	

q  Identify large number of regions	

Gene functional annotation	

April, 2013	

 7	

Sequence	
 similarity	

Gene	
 context	
 provide	
 informa7on	
 for	
 the	
 func7on	
 of	
 genes.	

Func7onally	
 related	
 genes	
 are	
 frequently	
 found	
 in	
 the	
 same	

chromosomal	
 neighborhood.	

350nt	
 50nt	

50nt	
 250nt	

50nt	

•  Casse>e	
 Defini7on	

•  Parallel	
 or	
 Divergent	
 orienta7on	

•  Distance	
 <	
 300nt	

Conserved chromosomal cassettes	

April, 2013	

 8	

•  Genes are replaced by protein families (COGs, pfams, IMG ortholog
families). One gene à multiple families.

•  We refer to these as “properties”, such as “cog0087 cog0088
cog0089 pfam00181 pfam00189 pfam00203 pfam00237”

•  Boxes that share two cassettes and two genes, if the genomes are
distant phylogenetically (more than species)

•  E.g. for black box: blue and red are 1st step relatives.

H	

G	

F	

E	

D	

C	

B	

A	

XI	
 X	
 IX	
 VII	
 VI	
 V	
 IV	
 III	
 II	
 I	

Why is this problem hard?	

q Size	

² 100 million cassettes, with properties from about 25,000 possible values
(currently).	

² Total number of elements: 2.5 x 1012	

Challenge	

q Query types	

² Given a cassette find all cassettes that have the same properties in
common	

o  That is a massive multi-value search	

² Given a cassette find all cassettes that have 2-or-more properties in
common (in general k-or-more)	

o  Explosive search of all possible combinations of 2-or-more	

April, 2013	

 9	

Big Data Indexing Requirements	

q  Speed of search	

²  Search over billions – trillions data values in seconds	

q Multi-variable queries	

² Be efficient for combining results from individual variable search results	

q  Size of index	

²  Index size should be a fraction of original data	

q Granularity 	

² Ability to produce smaller indexes when granularity can be reduced, such as 1

decimal points, for example	

q  Parallelism	

²  Should be easily partitioned into sections for parallel processing	

q  Speed of index generation	

²  For in situ processing, index should be built at the rate of data generation	

April, 2013	

 10	

Scaling simulations generates ���
a data volume challenge (PBs)	

April, 2013	

 11	

Simula7on	
 Machine	
 Analysis	

Machine	

Archive	

Parallel	
 Storage	
 Shared	

storage	

Experimental/	

Observa7onal	
 data	

subset	

su
bs
et
	

Analysis	

Machine	

Analysis	

Machine	

Simula<on	
 Site	
 	
 Analysis	
 Site	
 (i)	

Exp	
 Site	
 	

What Can be Done?	

April, 2013	

 12	

q  Perform some data analysis and visualization on simulation machine (in-situ)	

q  Reduce Data and prepare data for further analysis (in-situ)	

Simula7on	
 Machine	

+	
 Data	
 Reduc7on	
 and	
 Indexing	

+	
 Analysis	
 and	
 Visualiza7on	

Analysis	

Machine	

Archive	

Parallel	
 Storage	
 Shared	

storage	

Experimental/	

Observa7onal	
 data	

Simula<on	
 Site	
 	
 Analysis	
 Site	
 (i)	

Exp	
 Site	
 	

subset	

su
bs
et
	

Analysis	

Machine	

Analysis	

Machine	

Data Analysis	

q Two fundamental aspects	

² Pattern matching: Perform analysis tasks for finding known or expected
patterns	

² Pattern discovery: Iterative exploratory analysis processes of looking for
unknown patterns or features in the data	

q  Ideas for the analysis of Big Data	

² Perform pattern matching tasks in the simulation machine	

o  “In situ” analysis	

² Prepare data for pattern discovery on the simulation machine, and perform
analysis on mid-size analysis machine	

o  “In-transit” data preparation	

o  “Off-line” data analysis	

April, 2013	

 13	

Index:���
A Data Structure for Accelerating Data Accesses	

q Tree-based indexes	

² E.g. family of B-Trees	

² Commonly used database management systems	

² Sacrifice search efficiency to permit dynamic update	

q Multi-dimensional indexes	

² E.g. R-tree, Quad-trees, KD-trees, …	

² Don’t scale for large number of dimensions	

² Are inefficient for partial searches (subset of attributes)	

q Hashing	

² Predictable performance	

² Good for locating individual data records	

q Bitmap indexes:	

² Good for read-mostly data	

² Handle partial range queries efficiently	

² May have trouble handling data with a large number of distinct values	

14	

April, 2013	

Bitmap index for each variable	

April, 2013	

 15	

• Take advantage that index need to be is append only
• Generate a bitmap for each possible value of each variable

• (e.g. for 0<Np<300, have 300 bitmaps)
• compress each bit vector (some version of run length encoding)
• Need to touch only bitmaps for the specified search

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
1
0
0
0
1
0
0
0
0
0
0

0
0
0
0
0
1
1
1
0
1
1
1
0
1
1

1
0
1
1
0
0
0
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
1
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

variable 1

0
0
0
0
0
1
1
1
0
1
1
1
0
1
1

1
0
1
1
0
0
0
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
1
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
1
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

variable 2

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
1
0
0
0
0
0
0

0
0
0
0
0
1
1
1
0
1
1
1
0
1
1

1
0
1
1
0
0
0
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
1
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

variable n

0
0
0
0
1
0
0
0
0
0
0
0
0
0
0

. . .

Basic Bitmap Index	

A < 2	

 2 < A	

Data	

values	

0	

1	

5	

3	

1	

2	

0	

4	

1	

1	

0	

0	

0	

0	

0	

1	

0	

0	

0	

1	

0	

0	

1	

0	

0	

0	

1	

0	

0	

0	

0	

0	

1	

0	

0	

0	

0	

0	

0	

1	

0	

0	

0	

0	

0	

0	

0	

0	

0	

0	

0	

0	

1	

0	

0	

0	

1	

0	

0	

0	

0	

0	

0	

=0	

 =1	

 =2	

 =3	

 =4	

 =5	

b0	

 b1	

 b2	

 b3	

 b4	

 b5	

16	

April, 2013	

•  Easy to build: faster than building B-trees
•  Efficient for querying: only bitwise logical

operations
•  A < 2 à b0 OR b1
•  A > 2 à b3 OR b4 OR b5

•  Efficient for multi-dimensional queries
•  Use bitwise operations to combine

the partial results
•  Size: one bit per distinct value per object

•  Definition: Cardinality == number of
distinct values

•  Need to control size for high
cardinality attributes

•  Main idea:
•  highly efficient compression method
•  Compute friendly – can perform

operations directly on compressed
data

FastBit properties – highly efficient and
compact	

April, 2013	

 17	

Main idea:	

²  Invented specialized compression methods (was patented) that:	

o  Can perform logical operations directly on compressed bitmaps	

o  Excels in support of multi-variable queries 	

o  Can partition and merge bitmaps without decompression –

essential for parallelization of indexes	

FastBit takes advantage of append only data to achieve:	

²  Search speed by 10x – 100x than best known bitmap indexing methods	

²  On average about 1/3 of data volume compared to 2-3 times in
common indexes because of compression method	

²  Proven to be theoretically optimal – data search time is proportional
to size ���
of the result	

Usage	

²  In multiple scientific application in DOE	

²  Embedded into in situ frameworks	

²  Thousands of downloads around the world (open source under ���
source forge), including commercial companies	

Methods to Improve Bitmap Index	

q Compression	

² FastBit compression method: Word-Aligned Hybrid (WAH) code	

² 10x speedup over Byte-aligned Bitmap Code	

q Encoding	

² Multi-level encoding	

² Reduce bitmaps needed for a query	

² 5x speedup	

q Binning	

² Some times we choose to use bins at the fine level to reduce index size	

² Problem: if query falls in the middle of edge bins	

² Solution: Order-preserving Bin-based Clustering (OrBiC)	

² 5x speedup for searching bins	

18	

April, 2013	

Improving Bitmap Indexes: Multi-Level Encoding	

q  The finest-level may be precise or
binned	

q Coarse levels are always binned	

q  Each coarse bin contains a number

of fine bins/values	

q Queries can be processed with a

combination of coarse and fine
bitmaps	

q Only edge bins need to be resolved
at the fine level	

q Analysis revealed how to construct
the coarse level in order to reduce
the query processing time	

0	

0	

1	

0	

0	

1	

.	

.	

.	

1	

0	

0	

0	

1	

0	

.	

.	

.	

0	

0	

0	

0	

0	

0	

.	

.	

.	

0	

1	

0	

0	

0	

0	

.	

.	

.	

0	

0	

0	

0	

0	

0	

.	

.	

.	

0	

0	

0	

1	

0	

0	

.	

.	

.	

…	

1	

0	

1	

0	

1	

1	

.	

.	

.	

0	

1	

0	

0	

0	

0	

.	

.	

.	

0	

0	

0	

0	

0	

0	

.	

.	

.	

.	

.	

.	

.	

.	

	

.	

.	

.	

0	

0	

0	

0	

0	

0	

.	

.	

.	

0	

0	

0	

0	

0	

0	

.	

.	

.	

0	

0	

0	

1	

0	

0	

.	

.	

.	

coarse bins	

fine level	

range query	

edge 	

bin	

edge 	

bin	

0	

1	

 2	

 3	

0-2	

 3-7	

 980-1007	

5 –1000	

19	

[Wu, Shoshani and Stockinger 2010]	

April, 2013	

Two Levels Are Better Than One	

q Prove theoretically that
the second level needs
to have only a small
number of bins (15 ~
50 depending on data)	

q Only two levels are
necessary	

q Result: 5X speedup on
average (over WAH
compressed 1-level
index)	

10X faster	

[Wu, Shoshani and Stockinger 2010]	

20	

April, 2013	

Domain-Specific Challenges – current
and future	

q Generate index at the rate of data generation in situ	

²  Increase level of parallel processing	

² Perform partial index generation per node	

² Take advantage of local NVRAM	

q Adapt indexing methods to a variety of data models	

²  Irregular grids, geodesic meshes, toroidal meshes	

o  How to linearize the space	

² Multi-level grid, such as adaptive-mesh-refinement (AMR)	

q Use results of index in subsequent operations	

² Statistical summaries	

² Region growing, region overlaps, …	

q Adapt indexing to specialized operations	

² Searches for k-or-more matches	

² Searches based on formulas (plug-in-codes)	

April, 2013	

 21	

FastBit in support for Query-Driven
Visualization	

April, 2013	

 22	

Collaboration between SDM and Vis groups
•  Use FastBit indexes to efficiently select the most interesting data for visualization

Example: laser wakefield accelerator simulation
•  VORPAL produces 2D and 3D simulations of particles in laser wakefield
•  Finding and tracking particles with large momentum is key to design the accelerator
•  Brute-force algorithm is quadratic (taking 5 minutes on 0.5 mil particles), FastBit time is

linear in the number of results (takes 0.3 s, 1000 X speedup)

FastBit adaptation to toroidal meshes	

April, 2013	

 23	

•  Extended FastBit indexing capability to search for
regions of interest defined on toroidal meshes used
for fusion simulations

•  Developed algorithms to take full advantages of the
regularity present in the magnetic coordinates but
not in the Cartesian coordinates

•  Much more compact than the general connectivity
graph: ~ 200 numbers vs. 6 million numbers

•  Labeling query lines using magnetic coordinates is
600-1000 x faster than using connectivity graph

•  Developed new Connected Component Labeling
algorithm
–  Recently used in Atmospheric Rivers project

Adapting to cassette searches	

April, 2013	

 24	

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
1
0
0
0
1
0
0
0
0
0
0

0
0
0
0
0
1
1
1
0
1
1
1
0
1
1

1
0
1
1
0
0
0
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
1
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
1
1
1
0
1
1
1
0
1
1

1
0
1
1
0
0
0
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
1
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
1
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

. . .

Cassette 1
Cassette 2
Cassette 3

Cassette N

Results:	
 (1)	
 given	
 a	
 casse>e,	
 search	
 all	
 casse>es	
 with	
 the	
 same	
 proper7es	

	
 Done	
 in	
 about	
 	
 0.07	
 second	
 (using	
 ver7cal	
 bitmaps)	

(2)	
 Find	
 similar	
 casse>es	
 with	
 2	
 or	
 more	
 proper7es	

	
 Done	
 in	
 about	
 10-­‐15	
 seconds	
 (using	
 horizontal	
 bitmaps)	

	

	

	

0 0 0 0 0 1 1 1 0 1 1 1 0 1 1

1 0 1 1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Cassette 1
Cassette 2
Cassette 3

Cassette N

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 1 1 0 1 1 1 0 1 1

1 0 1 1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

. . .

Ver<cal	
 Organiza<on	
 Horizontal	
 Organiza<on	

Flame Front Tracking in Combustion	

 Challenges

² Cell identification
² Identify all cells that satisfy

 range conditions

² Region growing
² Connect neighboring

 cells into regions

² Region tracking
² Track the evolution of

 the features through time

April, 2013	

 25	

Finding & tracking of combustion flame fronts

Big Data Indexing Requirements: ���
Bitmap indexing advantage	

q  Speed of search	

²  Search over billions – trillions data values in seconds	

o  Yes, with compute-friendly compression	

q  Multi-variable queries	

²  Be efficient for combining results from individual variable search results	

o  Yes, combining results for each variable as bitmaps is very efficient	

q  Size of index	

²  Index size should be a fraction of original data	

o  Yes, compression of bitmap index is essential	

q  Granularity 	

²  Ability to produce smaller indexes when granularity can be reduced, such as 2 decimal

points, for example	

o  Yes, binning over multiple values proved very effective	

q  Parallelism	

²  Should be easily partitioned into sections for parallel processing	

o  Yes, if compressed bitmaps can be easily combined (WAH has this property)	

q  Speed of index generation	

²  For in situ processing, index should be built at the rate of data generation	

o  OK for billions of values, but a trillion value index took 10 minutes (still a challenge)	

April, 2013	

 26	

Architectural Changes that Could Benefit in
situ indexing	

q NVRAM on each node	

² Can be used to build partial indexes over multiple time steps	

² Can be used to accelerate in-situ index generation	

q Take advantage of GPUs	

² Assign index generation for each variable to separate GPUs	

q NVRAM between machine and storage system	

² Can be used for generating indexing for post-processing while data is

streaming out to be stored on disk	

April, 2013	

 27	

THANKS!	

FastBit software http://sdm.lbl.gov/fastbit/	

FastQuery software http://goo.gl/iBw6V	

Scientific Data Management group http://sdm.lbl.gov/ 	

Co-authors:	

E. W. Bethel, S. Byna, J. Chou, W. S. Daughton, M. Howison, H. Karimabadi, K.-J. Hsu,

K.-W. Lin, V. Markowitz, K. Mavrommatis, Prabhat, A. Romosan, V. Roytershteynz, O.

Rübel, A. Shoshani, A. Uselton	

