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Outline	


q Examples of indexing���
    needs in scientific domains	


q  Scientific Indexing���
    requirements	



q Bitmaps indexing as a���
   promising technology	
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Example of Big 
Data in 
Science���
���
Large Hadron 
Collider: to find the 
God particle	



•  15 PB per year – sensors capable of 
140PB/s	



•  27 km tunnel	


•  ~10,000 superconducting magnets	


•  Operating temperature 1.9 Kelvin	


•  Construction cost:	



US$9Billion	



•  Power consumption: ~120 MW	
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Typical Event Figures	
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STAR: Solenoidal Tracker At RHIC 
RHIC: Relativistic Heavy Ion Collider 
 
LHC: Large Hadron Collider 
Includes: ATLAS, CMS, … 

Experiment 
# members 
/institutions 

Date of 
first data 

# events/ 
year volume/year- 

TB 
STAR   350/35 2001 10 8 -10 9     500 
PHENIX   350/35 2001 10 9     600 
BABAR   300/30 1999 10 9       80 
CLAS   200/40 1997 10 10     300 
ATLAS 1200/140 2008 10 10   5000 

A mockup of 
An “event” 



What are the indexing challenges?	


q  Generate large amounts of raw data – referred to as “events”	



²  Collected from simulations and experiments	


q  Post-processing of data	



²  Identify elements in data (find particles produced, tracks)	


²  generate summary variables per event	



o  e.g. momentum, no. of pions, transverse energy	


o  Number of variables is large (50-100)	



q  Analyze data	


²  use summary variables to characterize events	


²  extract subsets from the large dataset	



o  Need to access events based on partial ���
variable specification (range queries)	



o  e.g. ((0.1 < AVpT < 0.2) ^ (10 < Np < 20)) v (N > 6000)	


q  Challenges	



²  Search over billions of events	


² Multi-variable search, but only over a subset of the variable	


²  Type of query: a needle-in-the-haystack	


²  Another type of query: larger subsets for statistical properties	


²  Search over numerical values (integers, floating point)	
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Combustion simulation example	


q  Combustion simulation: 1000x1000x1000 mesh with 100s of chemical species over 

1000s of time steps – 1014 data values	
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q  This is an image of a single variable���
(temperature)	



q  What’s needed is search over���
multiple variables, such as:	



      Temperature > 1000���
AND pressure > 106���
AND HO2 > 10-7 AND HO2 > 10-6	



q  Challenges	


q  Multi-variable queries from a 

subset of variables	



q  Search over numerical values	


q  Identify large number of regions	





Gene functional annotation	
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Sequence	
  similarity	
  
Gene	
  context	
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  for	
  the	
  func7on	
  of	
  genes.	
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  genes	
  are	
  frequently	
  found	
  in	
  the	
  same	
  
chromosomal	
  neighborhood.	
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Conserved chromosomal cassettes	
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•  Genes are replaced by protein families (COGs, pfams, IMG ortholog 
families).  One gene à multiple families. 

•  We refer to these as “properties”, such as “cog0087 cog0088 
cog0089 pfam00181 pfam00189 pfam00203 pfam00237” 

•  Boxes that share two cassettes and two genes, if the genomes are 
distant phylogenetically (more than species) 

•  E.g. for black box: blue and red are 1st step relatives. 
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Why is this problem hard?	


q Size	



² 100 million cassettes, with properties from about 25,000 possible values 
(currently).	



² Total number of elements: 2.5 x 1012	



Challenge	


q Query types	



² Given a cassette find all cassettes that have the same properties in 
common	


o  That is a massive multi-value search	



² Given a cassette find all cassettes that have 2-or-more properties in 
common (in general k-or-more)	


o  Explosive search of all possible combinations of 2-or-more	
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Big Data Indexing Requirements	


q  Speed of search	



²  Search over billions – trillions data values in seconds	



q Multi-variable queries	


² Be efficient for combining results from individual variable search results	



q  Size of index	


²  Index size should be a fraction of original data	



q Granularity 	


² Ability to produce smaller indexes when granularity can be reduced, such as 1 

decimal points, for example	



q  Parallelism	


²  Should be easily partitioned into sections for parallel processing	



q  Speed of index generation	


²  For in situ processing, index should be built at the rate of data generation	
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Scaling simulations generates ���
a data volume challenge (PBs)	
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What Can be Done?	
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q  Perform some data analysis and visualization on simulation machine (in-situ)	


q  Reduce Data and prepare data for further analysis (in-situ)	
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Data Analysis	


q Two fundamental aspects	



² Pattern matching: Perform analysis tasks for finding known or expected 
patterns	



² Pattern discovery: Iterative exploratory analysis processes of looking for 
unknown patterns or features in the data	



q  Ideas for the analysis of Big Data	


² Perform pattern matching  tasks in the simulation machine	



o  “In situ” analysis	



² Prepare data for pattern discovery on the simulation machine, and perform 
analysis on mid-size analysis machine	


o  “In-transit” data preparation	



o  “Off-line” data analysis	
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Index:���
A Data Structure for Accelerating Data Accesses	



q Tree-based indexes	


² E.g. family of B-Trees	


² Commonly used database management systems	


² Sacrifice search efficiency to permit dynamic update	



q Multi-dimensional indexes	


² E.g. R-tree, Quad-trees, KD-trees, …	


² Don’t scale for large number of dimensions	


² Are inefficient for partial searches (subset of attributes)	



q Hashing	


² Predictable performance	


² Good for locating individual data records	



q Bitmap indexes:	


² Good for read-mostly data	


² Handle partial range queries efficiently	


² May have trouble handling data with a large number of distinct values	
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Bitmap index for each variable	
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• Take advantage that index need to be is append only 
• Generate a bitmap for each possible value of each variable 

• (e.g. for 0<Np<300, have 300 bitmaps)  
• compress each bit vector (some version of run length encoding) 
• Need to touch only bitmaps for the specified search 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
1 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
1 
1 
1 
0 
1 
1 
1 
0 
1 
1 

1 
0 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

variable 1 

0 
0 
0 
0 
0 
1 
1 
1 
0 
1 
1 
1 
0 
1 
1 

1 
0 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
1 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

variable 2 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
1 
1 
1 
0 
1 
1 
1 
0 
1 
1 

1 
0 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

variable n 

0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

. . . 



Basic Bitmap Index	
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•  Easy to build: faster than building B-trees 
•  Efficient for querying: only bitwise logical 

operations 
•  A < 2 à b0 OR b1 
•  A > 2 à b3 OR b4 OR b5 

•  Efficient for multi-dimensional queries 
•  Use bitwise operations to combine 

the partial results 
•  Size: one bit per distinct value per object 

•  Definition: Cardinality == number of 
distinct values 

•  Need to control size for high 
cardinality attributes 

•  Main idea:  
•  highly efficient  compression method 
•  Compute friendly – can perform 

operations directly on compressed 
data 



FastBit properties – highly efficient and 
compact	
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Main idea:	


²  Invented specialized compression methods (was patented) that:	



o  Can perform logical operations directly on compressed bitmaps	


o  Excels in support of multi-variable queries 	


o  Can partition and merge bitmaps without decompression – 

essential for parallelization of indexes	



FastBit takes advantage of append only data to achieve:	



²  Search speed by 10x – 100x than best known bitmap indexing methods	



²  On average about 1/3 of data volume compared to 2-3 times in 
common indexes because of compression method	



²  Proven to be theoretically optimal – data search time is proportional 
to size ���
of the result	



Usage	



²  In multiple scientific application in DOE	



²  Embedded into in situ frameworks	



²  Thousands of downloads around the world (open source under ���
source forge), including commercial companies	





Methods to Improve Bitmap Index	


q Compression	



² FastBit compression method: Word-Aligned Hybrid (WAH) code	


² 10x speedup over Byte-aligned Bitmap Code	



q Encoding	


² Multi-level encoding	


² Reduce bitmaps needed for a query	


² 5x speedup	



q Binning	


² Some times we choose to use bins at the fine level to reduce index size	


² Problem: if query falls in the middle of edge bins	


² Solution: Order-preserving Bin-based Clustering (OrBiC)	


² 5x speedup for searching bins	
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Improving Bitmap Indexes: Multi-Level Encoding	



q  The finest-level may be precise or 
binned	



q Coarse levels are always binned	


q  Each coarse bin contains a number 

of fine bins/values	


q Queries can be processed with a 

combination of coarse and fine 
bitmaps	



q Only edge bins need to be resolved 
at the fine level	



q Analysis revealed how to construct 
the coarse level in order to reduce 
the query processing time	
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[Wu, Shoshani and Stockinger 2010]	



April, 2013	





Two Levels Are Better Than One	



q Prove theoretically that 
the second level needs 
to have only a small 
number of bins (15 ~ 
50 depending on data)	



q Only two levels are 
necessary	



q Result: 5X speedup on 
average (over WAH 
compressed 1-level 
index)	



10X faster	



[Wu, Shoshani and Stockinger 2010]	
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Domain-Specific Challenges – current 
and future	



q Generate index at the rate of data generation in situ	


²  Increase level of parallel processing	


² Perform partial index generation per node	


² Take advantage of local NVRAM	



q Adapt indexing methods to a variety of data models	


²  Irregular grids, geodesic meshes, toroidal meshes	



o  How to linearize the space	


² Multi-level grid, such as adaptive-mesh-refinement (AMR)	



q Use results of index in subsequent operations	


² Statistical summaries	


² Region growing, region overlaps, …	



q Adapt indexing to specialized operations	


² Searches for k-or-more matches	


² Searches based on formulas (plug-in-codes)	



April, 2013	

 21	





FastBit in support for Query-Driven 
Visualization	
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Collaboration between SDM and Vis groups 
•  Use FastBit indexes to efficiently select the most interesting data for visualization 

Example: laser wakefield accelerator simulation 
•  VORPAL produces 2D and 3D simulations of particles in laser wakefield 
•  Finding and tracking particles with large momentum is key to design the accelerator 
•  Brute-force algorithm is quadratic (taking 5 minutes on 0.5 mil particles), FastBit time  is 

linear in the number of results (takes 0.3 s, 1000 X speedup) 

 



FastBit adaptation to toroidal meshes	
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•  Extended FastBit indexing capability to search for 
regions of interest defined on toroidal meshes used 
for fusion simulations 

•  Developed algorithms to take full advantages of the 
regularity present in the magnetic coordinates but 
not in the Cartesian coordinates 

•  Much more compact than the general connectivity 
graph: ~ 200 numbers vs. 6 million numbers 

•  Labeling query lines using magnetic coordinates is 
600-1000 x faster than using connectivity graph 

•  Developed new Connected Component Labeling 
algorithm 
–  Recently used in Atmospheric Rivers project 



Adapting to cassette searches	
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Results:	
  (1)	
  given	
  a	
  casse>e,	
  search	
  all	
  casse>es	
  with	
  the	
  same	
  proper7es	
  
	
  Done	
  in	
  about	
  	
  0.07	
  second	
  (using	
  ver7cal	
  bitmaps)	
  

(2)	
  Find	
  similar	
  casse>es	
  with	
  2	
  or	
  more	
  proper7es	
  
	
  Done	
  in	
  about	
  10-­‐15	
  seconds	
  (using	
  horizontal	
  bitmaps)	
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Flame Front Tracking in Combustion	


     Challenges  
 

² Cell identification 
² Identify all cells that satisfy 

   range conditions 

 
² Region growing 
² Connect neighboring 

   cells into regions 

² Region tracking 
² Track the evolution of 

   the features through time 
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Finding & tracking of combustion flame fronts 



Big Data Indexing Requirements: ���
Bitmap indexing advantage	



q  Speed of search	


²  Search over billions – trillions data values in seconds	



o  Yes, with compute-friendly compression	



q  Multi-variable queries	


²  Be efficient for combining results from individual variable search results	



o  Yes, combining results for each variable as bitmaps is very efficient	



q  Size of index	


²  Index size should be a fraction of original data	



o  Yes, compression of bitmap index is essential	



q  Granularity 	


²  Ability to produce smaller indexes when granularity can be reduced, such as 2 decimal 

points, for example	


o  Yes, binning over multiple values proved very effective	



q  Parallelism	


²  Should be easily partitioned into sections for parallel processing	



o  Yes, if compressed bitmaps can be easily combined (WAH has this property)	



q  Speed of index generation	


²  For in situ processing, index should be built at the rate of data generation	



o  OK for billions of values, but a trillion value index took 10 minutes (still a challenge)	
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Architectural Changes that Could Benefit in 
situ indexing	



q NVRAM on each node	


² Can be used to build partial indexes over multiple time steps	



² Can be used to accelerate in-situ index generation	



q Take advantage of GPUs	


² Assign index generation for each variable to separate GPUs	



q NVRAM between machine and storage system	


² Can be used for generating indexing for post-processing while data is 

streaming out to be stored on disk	
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THANKS!	



FastBit software http://sdm.lbl.gov/fastbit/	


FastQuery software http://goo.gl/iBw6V	



Scientific Data Management group http://sdm.lbl.gov/ 	
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