-

N A
\

rreererer ﬂ

lr)

On the Role of Indexing for Big
Data in Scientific Domains

Arie Shoshani

Lawrence Berkeley National Lab

BIGDATA and EXTREME-SCALE COMPUTING
April 30-May 1,2013

Outline

JExamples of indexing
needs in scientific domains

U Scientific Indexing
requirements

Bitmaps indexing as a
promising technology

April, 2013

oooooooooooooo

Example of Big
Data in
Science

Large Hadron

Collider: to find the
God particle

15 PB per year — sensors capable of
| 40PB/s

27 km tunnel

~10,000 superconducting magnets
* Operating temperature 1.9 Kelvin

Construction cost:
US$9Billion
* Power consumption: ~120 MW

April, 2013

Typical Event Figures

members | Date of [# events/ | volume/year-
Experiment | /institutions | first data [Y€ar B
STAR 350/35 2001 1 08_1 09 500
PHENIX 350/35 2001 109 600
BABAR 300/30 1999 1 09 80
CLAS 200/40 1997 1 010 300
ATLAS | 1200/140 | 2008 14° 5000
STAR: Solenoidal Tracker At RHIC
RHIC: Relativistic Heavy lon Collider
LHC: Large Hadron Collider A mockup of
InCIUdeS: ATLAS, CMS, - An “event”

April, 2013

What are the indexing challenges?

L Generate large amounts of raw data — referred to as “events”
< Collected from simulations and experiments
O Post-processing of data
<> Identify elements in data (find particles produced, tracks)
<> generate summary variables per event
O e.g. momentum, no. of pions, transverse energy
o Number of variables is large (50-100)
O Analyze data
<> use summary variables to characterize events
<> extract subsets from the large dataset

o Need to access events based on partial
variable specification (range queries)

o e.g (0.1 <AVPT <0.2) A (10 < Np < 20)) v (N > 6000)
1 Challenges

<> Search over billions of events

< Multi-variable search, but only over a subset of the variable

< Type of query: a needle-in-the-haystack

<> Another type of query: larger subsets for statistical properties
<> Search over numerical values (integers, floating point)

April, 2013

Combustion simulation example

1 Combustion simulation: 1000x1000x 1000 mesh with 100s of chemical species over
1000s of time steps — 10'* data values

L This is an image of a single variable
(temperature)

J What’s needed is search over
multiple variables, such as:

Temperature > 1000
AND pressure > 106
AND HO2 > 107 AND HO2 > 10-¢

O Challenges

L Multi-variable queries from a
subset of variables

L Search over numerical values

O Identify large number of regions

April, 2013

Gene functional annotation

Sequence similarity

Gene context provide information for the function of genes.

Functionally related genes are frequently found in the same
chromosomal neighborhood.

* (Cassette Definition
* Parallel or Divergent orientation
 Distance < 300nt

- -

50nt 350nt
50nt 250nt

—= =

April, 2013 50nt

Conserved chromosomal cassettes

* Genes are replaced by protein families (COGs, pfams, IMG ortholog
families). One gene - multiple families.

* We refer to these as “properties”, such as “cog0087 cog0088
cog0089 pfam00181 pfam00189 pfam00203 pfam00237”

| Il 1l I\ \ Vi Vil IX X Xl

o I E— e

= > >==
g)) "
——— >~ >=¢

T [n) n m o O @ >

Boxes that share two cassettes and two genes, if the genomes are
distant phylogenetically (more than species)

E.g. for black box: blue and red are 15t step relatives.

April, 2013

Why is this problem hard!?

1 Size

<> 100 million cassettes, with properties from about 25,000 possible values
(currently).

<> Total number of elements: 2.5 x 10!2
Challenge
U Query types

<> Given a cassette find all cassettes that have the same properties in
common

o That is a massive multi-value search

<> Given a cassette find all cassettes that have 2-or-more properties in
common (in general k-or-more)

o Explosive search of all possible combinations of 2-or-more

April, 2013

Big Data Indexing Requirements

(1 Speed of search

<> Search over billions — trillions data values in seconds

 Multi-variable queries

<~ Be efficient for combining results from individual variable search results
1 Size of index
<> Index size should be a fraction of original data

1 Granularity

<~ Ability to produce smaller indexes when granularity can be reduced, such as |
decimal points, for example

 Parallelism
<> Should be easily partitioned into sections for parallel processing

(] Speed of index generation

< For in situ processing, index should be built at the rate of data generation

April, 2013 10

Scaling simulations generates
a data volume challenge (PBs)

Archive

Simulation Site Analysis Site (i)

] T i

I I . I

, : : Analysis I

: Simulation Machine L Machine :
I I

: Ly |

I : I :

: subset | I < I

:) Shared I

: Parallel Storage :

: .

I L e e e e = = - — - |

L N\ Exp_Site _

|

|

|

|

|

|

|

|

April, 2013

What Can be Done!?

L Perform some data analysis and visualization on simulation machine (in-situ)
L Reduce Data and prepare data for further analysis (in-situ)

Simulation Site Analysis Site (i)

Analysis
Machine

Simulation Machine
+ Data Reduction and Indexing
+ Analysis and Visualization

R 4

|
|
|
|
|
|
|
|
|
|
|
I ‘ Parallel Storage
|
|
|
|
|
|
|
|
|
|
|

ared
storage

Archive

®)
a
X
5
< 0
Q =
2 3
=5 MO
Q =
Q_m
(o))
-+
Q)

Data Analysis

1 Two fundamental aspects

<> Pattern matching: Perform analysis tasks for finding known or expected
patterns

<> Pattern discovery: Iterative exploratory analysis processes of looking for
unknown patterns or features in the data
[Ideas for the analysis of Big Data
<> Perform pattern matching tasks in the simulation machine
o “In situ” analysis

<> Prepare data for pattern discovery on the simulation machine, and perform
analysis on mid-size analysis machine

o “In-transit” data preparation

o “Off-line” data analysis

April, 2013 13

Index:
A Data Structure for Accelerating Data Accesses

 Tree-based indexes
<> E.g. family of B-Trees
<> Commonly used database management systems
<~ Sacrifice search efficiency to permit dynamic update

(Multi-dimensional indexes
< E.g. R-tree, Quad-trees, KD-trees, ...
< Don’t scale for large number of dimensions
<> Are inefficient for partial searches (subset of attributes)

1 Hashing

<> Predictable performance
< Good for locating individual data records

1 Bitmap indexes:
< Good for read-mostly data
< Handle partial range queries efficiently
<> May have trouble handling data with a large number of distinct values

April, 2013

index for each variable

* Take advantage that index need to be is append only

Iitmap

B

* Generate a bitmap for each possible value of each variable

* (e.g. for 0<Np<300, have 300 bitmaps)
« compress each bit vector (some version of run length encoding)

* Need to touch only bitmaps for the specified search

variable n

variable 2

variable 1

= =-E-E-E-N-E-E-N-E-E-E-E-N-N-]

=== -E-N-E-E-N-E-E-E-E -]

=A== -E-E-E-E-E-E-E-N-N-]

TFTOTTFrTO OO0 000000 OO

_ OO0 00O FT“F“F O™ ™ O «™

=N =-E-N-E-E-E-E-Ea-N-E-E-N--)

= =-E-E-E-N-E-E-N-E-E-E-E-N-N-]

== E-E-Aul-E-N-N-E-E-E-E-N-N-]

= =-E-E-E-N-E-E-N-E-E-E-E-N-N-]

=== -E-N-E-E-N-E-E-E-RA -]

OT-TO 0000 O ~rrTO OO0 OO

TFTOTTrrTO OO0 00000 OO

_ OO0 00O FT“T“F O™ ™ O «™«

= =-E-E-E-N-E-E-N-E-E-E-E-N-N-]

=== -E-N-E-E-N-E-E-E-E -]

=A== -E-E-E-E-E-E-E-N-N-]

TFTOrrTO OO0 000000 OO

_ 000001110111011_
_ 000010001000000_

= =-E-E-E-N-E-E-N-E-E-E-E-N-N-]

I5

April, 2013

Basic Bitmap Index

Easy to build: faster than building B-trees

Data by by b, by by bs Efficient for querying: only bitwise logical
values =0 =l =2 =3 =4 =5 operations
0 [1 (0] 10| 10! 0] 10 * A<2-5>b,0ORD,
- A>2->b,0Rb,ORDb
| 0| |I| |0| 0] 0| |0 . 3oL AT .
« Efficient for multi-dimensional queries
5 Of (0| (0| (0| (O] | « Use bitwislse opelzrations to combine
the partial results
3 0110119, 111 19 0 « Size: one bit per distinct value per object
] Ol || [0f |0 0| O » Definition: Cardinality == number of
2 ol lol 111 1ol lol lo distinct values
* Need to control size for high
0 [{ 10] 10] (O |0] |0 cardinality attributes
4 ol 1ol 1ol 101 |1 |0 * Main idea:
ol 111 lol lol lo!l lo * highly efficient compression method
I « Compute friendly — can perform
0372—0 QW operations directly on compressed

data

April, 2013 16

FastBit properties — highly efficient and

April, 2013

compact

Main idea:

< Invented specialized compression methods (was patented) that:
o Can perform logical operations directly on compressed bitmaps
o Excels in support of multi-variable queries

o Can partition and merge bitmaps without decompression -
essential for parallelization of indexes

FastBit takes advantage of append only data to achieve:
< Search speed by 10x — 100x than best known bitmap indexing methods

< On average about I/3 of data volume compared to 2-3 times in
common indexes because of compression method

< Proven to be theoretically optimal — data search time is proportional
to size
of the result

Usage
< In multiple scientific application in DOE
< Embedded into in situ frameworks

< Thousands of downloads around the world (open source under
source forge), including commercial companies

Methods to Improve Bitmap Index

] Compression
<> FastBit compression method:Word-Aligned Hybrid (WAH) code

<> 10x speedup over Byte-aligned Bitmap Code
4 Encoding

<> Multi-level encoding
<> Reduce bitmaps needed for a query
<> 5x speedup
d Binning
<> Some times we choose to use bins at the fine level to reduce index size
<> Problem: if query falls in the middle of edge bins
<> Solution: Order-preserving Bin-based Clustering (OrBiC)
<> 5x speedup for searching bins

April, 2013 18

Improving Bitmap Indexes: Multi-Level Encoding

1 The finest-level may be precise or
binned

(1 Coarse levels are always binned

1 Each coarse bin contains a number
of fine bins/values

1 Queries can be processed with a
combination of coarse and fine
bitmaps

1 Only edge bins need to be resolved
at the fine level

1 Analysis revealed how to construct
the coarse level in order to reduce
the query processing time

April, 2013

edge

bin

0-2

range query edge
bin
5 -1000
3.7 980-1007

|
0
|
0
|
|

coarse bins

O OO0 —0O
OO0 oo oo
OO —o0 oo

O O oo
o O oo

T OO0 oo oo
oo —o0oo

[Wu, Shoshani and Stockinger 2010]

19

Two Levels Are Better Than One

[Prove theoretically that
the second level needs
to have only a small
number of bins (15 ~
50 depending on data) .

 Only two levels are
necessary

(Result: 5< speedup on
average (over WAH
compressed |-level
index)

query response time (sec)

[Wu, Shoshani and Stockinger 2010]

April, 2013

12

—h
o
T

(oo}

(o))

=

N

—t+—1-level
-&-2.level

10X faster

-0 66408600 6 0-8-8-8-8-8-8-8-8-g-g.

2 4 6 8 10
number of hits

20

Domain-Specific Challenges — current
and future

[Generate index at the rate of data generation in situ
<> Increase level of parallel processing

<> Perform partial index generation per node
<> Take advantage of local NVRAM

(] Adapt indexing methods to a variety of data models

<> Irregular grids, geodesic meshes, toroidal meshes

o How to linearize the space

<> Multi-level grid, such as adaptive-mesh-refinement (AMR)
[Use results of index in subsequent operations

<~ Statistical summaries

<> Region growing, region overlaps, ...
(] Adapt indexing to specialized operations

<> Searches for k-or-more matches
<> Searches based on formulas (plug-in-codes)

April, 2013 21

FastBit in support for Query-Driven

April, 2013

Visualization

Collaboration between SDM and Vis groups
Use FastBit indexes to efficiently select the most interesting data for visualization

Example: laser wakefield accelerator simulation

VORPAL produces 2D and 3D simulations of particles in laser wakefield

Finding and tracking particles with large momentum is key to design the accelerator

Brute-force algorithm is quadratic (taking 5 minutes on 0.5 mil particles), FastBit time is
linear in the number of results (takes 0.3 s, 1000 X speedup)

Request Histograms

FastBit

A

A

2D Histograms

>
Context
2D Histograms . - : - -

Focus

Define Condition p@l‘ Thresholds / Id's
Selected Data b—

Select and Trace

22

FastBit adaptation to toroidal meshes

- Extended FastBit indexing capability to search for
regions of interest defined on toroidal meshes used
for fusion simulations

« Developed algorithms to take full advantages of the
regularity present in the magnetic coordinates but
not in the Cartesian coordinates

« Much more compact than the general connectivity
graph: ~ 200 numbers vs. 6 million numbers

« Labeling query lines using magnetic coordinates is

600-1000 x faster than using connectivity graph —
g y grap 7 ——
« Developed new Connected Component Labeling / > -5
algorithm Q(/ —
\ \\‘\\ ~ // v

- Recently used in Atmospheric Rivers project

April, 2013 23

Adapting to cassette searches

Results: (1) given a cassette, search all cassettes with the same properties

Done in about 0.07 second (using vertical bitmaps)

(2) Find similar cassettes with 2 or more properties

Done in about 10-15 seconds (using horizontal bitmaps)

"Iy7
er,y3

P,.o'oe
P,ope
P,.op

Cassette 1
Cassette 2
Cassette 3

OO0 000000000 O0OCDO0OO0OO

Cassette N

April, 2013

OO 000 O0O-~~000-_~000O0 I

I__\c___\c___\cccccl

OO 000000000 =_A=-0=
OO0 000000000 O0ODO=-0
OO0 0000000 0C0CO0OCO0OO
OO0 000000000 O0OCDO0OO0OO

|—\—\O—\—\—\Q—\—\—\OQ°°G

Vertical Organization

OO 000000000 =_A=0=

OO0 000 O0O-_~000000C00=-0

OO0 0000000 0C0CO0OCO0OO

[=N=N-N-N-lN-N-lN-N-N-N-N-l-N--)

Sap

FEe

S &L

< 99

Q qQ q
Cassette']l ccocoocoocoococoococooco oo |
Cassette 2

[cccoocoocoocoococoocococox~ oo
Cassette 3

[orrcoocoococoococoocococococ oo

-~—fOr-rr~O0OO0OO0O0O0O0O0O0O OO |

OOOOO\—\—‘—O\—\—\—O\—\—I

OOOOOOOOOOOOOOOI

|
|
[ccocoococoococo~~ocococo oo
|
|

OOOO\—OOOOOOOOOOI

|°O°QOQOQQOQOQQOI
|°O°QOQOQQOQO\—QOI
|°\—°QOQOQ\—OQOQQOI

[~rorroocococoococoococococo]
Cassette N[coccorrr o0~ -0 « « |

Horizontal Organization

24

Flame Front Tracking in Combustion

Challenges

R T
« & *\ <>Cell identification
Ry <Identify all cells that satisfy
My ..k'. g "h&z 3 b‘ﬂiﬁ I ”ﬁi

range conditions
ETFEEE5EﬁEiiﬁ@?ﬁE&ﬁ&EﬁEﬁﬁ&iéﬁ%ﬁ%‘
e

T 9eqge0522090 seatssss 2392280092 M <-Region growing
= ¥ / MR

T

A <Connect neighboring

y! cells into regions

<>Region tracking

<>Track the evolution of
the features through time

April, 2013 25

Big Data Indexing Requirements:

Bitmap indexing advantage
 Speed of search

< Search over billions — trillions data values in seconds
o Yes, with compute-friendly compression
 Multi-variable queries

<> Be efficient for combining results from individual variable search results
o Yes, combining results for each variable as bitmaps is very efficient

(1 Size of index

<> Index size should be a fraction of original data
o Yes, compression of bitmap index is essential
O Granularity

<> Ability to produce smaller indexes when granularity can be reduced, such as 2 decimal
points, for example

o Yes, binning over multiple values proved very effective
O Parallelism
<> Should be easily partitioned into sections for parallel processing
o Yes, if compressed bitmaps can be easily combined (WAH has this property)
 Speed of index generation

<> For in situ processing, index should be built at the rate of data generation
o OK for billions of values, but a trillion value index took |0 minutes (still a challenge)

April, 2013 26

Architectural Changes that Could Benefit in
situ indexing

LJ NVRAM on each node

<> Can be used to build partial indexes over multiple time steps

<> Can be used to accelerate in-situ index generation

(] Take advantage of GPUs

<> Assign index generation for each variable to separate GPUs

(J NVRAM between machine and storage system

<> Can be used for generating indexing for post-processing while data is
streaming out to be stored on disk

April, 2013 27

-
, .
\
recrrec|

SIv \
)
Co-authors:

E.W. Bethel, S. Byna, J. Chou,W.S. Daughton, M. Howison, H. Karimabadi, K.-). Hsu,

K.-WV. Lin,V. Markowitz, K. Mavrommatis, Prabhat, A. Romosan,V. Roytershteynz, O.
Rubel, A. Shoshani,A. Uselton

FastBit software http://sdm.lbl.gov/fastbit/
FastQuery software http://goo.gl/iBwéV
Scientific Data Management group http://sdm.Ibl.gov/

U.S. DEPARTMENT OF Offlce Of

| EN ERGY Science

