European scalable and power efficient HPC platform based on low-power embedded technology

Alex Ramirez
Barcelona Supercomputing Center
Technical Coordinator
Project goal

- To develop an **European** exascale approach
- Based on embedded **power-efficient technology**

- Funded under FP7 Objective ICT-2011.9.13 Exa-scale computing, software and simulation
 - 3-year IP Project (October 2011 - September 2014)
 - Total budget: 14.5 M€ (8.1 M€ EC contribution),
 - 1095 Person-Month
Project objectives

• Objective 1: To deploy a **prototype HPC system** based on currently **available energy-efficient embedded technology**
 - Scalable to 50 PFLOPS on 7 MWatt
 - Competitive with Green500 leaders in 2014
 - Deploy a full HPC system software stack

• Objective 2: To design a next-generation HPC system and **new embedded technologies** targeting HPC systems that would overcome most of the limitations encountered in the prototype system
 - Scalable to 200 PFLOPS on 10 MWatt
 - Competitive with Top500 leaders in 2017

• Objective 3: To port and optimise a small number of **representative exascale applications** capable of exploiting this new generation of HPC systems.
Power defines performance

- Prototype goal: 50 PFLOPS on 7 MWatt
 - 7 GFLOPS / Watt efficiency
- Required improvement on energy efficiency
 - 3.5x over BG/Q
 - 5x over ATI GPU systems
 - 7x over Nvidia GPU systems
 - 8.5x over SPARC64 multi-core
 - 9x over Cell systems

<table>
<thead>
<tr>
<th>Green500 Rank</th>
<th>MFLOPS/W</th>
<th>Site*</th>
<th>Computer*</th>
<th>Total Power (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2097.19</td>
<td>IBM Thomas J. Watson Research Center</td>
<td>NNSA/SC Blue Gene/Q Prototype 2</td>
<td>40.95</td>
</tr>
<tr>
<td>2</td>
<td>1684.20</td>
<td>IBM Thomas J. Watson Research Center</td>
<td>NNSA/SC Blue Gene/Q Prototype 1</td>
<td>38.80</td>
</tr>
<tr>
<td>3</td>
<td>1375.88</td>
<td>Nagasaki University</td>
<td>DEGIMA Cluster, Intel i5, ATI Radeon GPU, Infiniband QDR</td>
<td>34.24</td>
</tr>
<tr>
<td>4</td>
<td>958.35</td>
<td>GSIC Center, Tokyo Institute of Technology</td>
<td>HP ProLiant SL390s G7 Xeon 6C X5670, Nvidia GPU, Linux/Windows</td>
<td>1243.80</td>
</tr>
<tr>
<td>5</td>
<td>891.88</td>
<td>QINEGA / SCS - SuperComputing Solution</td>
<td>iDataPlex DX360M3, Xeon 2.4, nVidia GPU, Infiniband</td>
<td>160.00</td>
</tr>
<tr>
<td>6</td>
<td>824.56</td>
<td>RIKEN Advanced Institute for Computational Science (AICS)</td>
<td>K computer, SPARC64 VIIIfx 2.0GHz, Tofu Interconnect</td>
<td>9898.56</td>
</tr>
<tr>
<td>7</td>
<td>773.38</td>
<td>Forschungszentrum Juelich (FZJ)</td>
<td>QPACE SFB TR Cluster, PowerXCell 8i, 3.2 GHz, 3D-Torus</td>
<td>57.54</td>
</tr>
</tbody>
</table>
Challenges and Opportunities

• Challenges
 • Exploit massive number of low-power processors
 • Exploit compute accelerators
 • Sustain performance with lower bandwidth components
 • Interconnect
 • Memory
 • Programmability

• Why do we think we can make it?
 • Energy-efficient building blocks
 • Hybrid MPI+OmpSs programming model
Energy-efficient building blocks

• Integrated system design built from mobile / embedded components
 • ARM multicore processors
 • Nvidia Tegra / Denver, Calxeda, Marvell Armada, ST-Ericsson Nova A9600, TI OMAP 5, …
 • Mobile accelerators
 • Mobile GPU
 • Nvidia GT 500M, …
 • Embedded GPU
 • Nvidia Tegra, ARM Mali T604
 • Low power 10 GbE switches
 • Gnodal GS 256
• Tier-0 system integration experience
 • BullX systems in the Top10
PRACE prototype @ BSC: ARM multicore

- First large-scale ARM cluster prototype
- Proof-of-concept to demonstrate HPC based on low-power components
 - Built entirely from COTS components
 - Mont-Blanc integrated design could improve substantially
- Enabler for early software development and tuning
 - Open-source system software stack
 - Application development and tuning to ARM platform

Tegra2 SoC:
- 2x ARM Corext-A9 Cores
- 2 GFLOPS
- 0.5 Watt

Tegra2 Q7 module:
- 1x Tegra2 SoC
- 2x ARM Corext-A9 Cores
- 1 GB DDR2 DRAM
- 2 GFLOPS
- ~4 Watt
- 1 GbE interconnect

1U Multi-board container:
- 1x Board container
- 8x Q7 carrier boards
- 8x Tegra2 SoC
- 16x ARM Corext-A9 Cores
- 8 GB DDR2 DRAM
- 16 GFLOPS
- ~35 Watt

Rack:
- 32x Board container
- 10x 48-port 1GbE switches
- 256x Q7 carrier boards
- 256x Tegra2 SoC
- 512x ARM Corext-A9 Cores
- 256 GB DDR2 DRAM
- 512 GFLOPS
- ~1.7 Kwatt
- 300 MFLOPS / W
PRACE prototype @ BSC: ARM + mobile GPU

Tegra3 Q7 module:
- 1x Tegra3 SoC
- 4x Corext-A9 @ 1.5 GHz
- 4 GB DDR3 DRAM
- 6 GFLOPS
- ~4 Watt
- 1 Gbe interconnect

Nvidia GeForce 520MX
- 48 CUDA cores @ 900 MHz
- 142 GFLOPS
- 12 Watts
- 11.8 GFLOPS / W

1U Multi-board container:
- 1x Board container
- 8x Q7 carrier boards
- 32x ARM Corext-A9 Cores
- 8x GT520MX GPU
- 32 GB DDR3 DRAM
- 1.2 TFLOPS
- ~140 Watt

Rack:
- 32x Board container
- 10x 48-port 1GbE switches
- 256x Q7 carrier boards
- 256x Tegra3 SoC
- 1024x ARM Corext-A9 Cores
- 256x GT520MX GPU
- 1TB DDR3 DRAM
- 38 TFLOPS
- ~5 Kwatt
- 7.5 GFLOPS / W

- Increasing number of Top500 systems use GPU accelerators
- Validate the use of their energy efficient counterparts
 - ARM multicore processors
 - Mobile Nvidia GPU accelerators
- Perform scalability tests to high number of compute nodes
 - Higher core count required when using low-power processors
 - Evaluate impact of limited memory and bandwidth on low-end solutions
Hybrid MPI + OmpSs programming model

- Hide complexity from programmer
- Runtime system maps task graph to architecture
 - Many-core + accelerator exploitation
- Asynchronous communication
 - Overlap communication + computation
- Asynchronous data transfers
 - Overlap data transfer + computation
- Strong scaling
 - Sustain performance with lower memory size per core
- Locality management
 - Optimize data movement
System software porting + tuning

- Linux OS
- Filesystem
 - NFS, Lustre
- Parallel programming model + Runtime libraries
 - OmpSs, OpenMP, MPI, OpenCL
- Scientific libraries
 - ATLAS, FFTW, HDF5, LAPACK, MAGMA, ...
- Performance tools
 - Hardware performance counters
 - EXTRAE, PARAVER, SCALASCA
- Cluster management
 - Slurm, Ganglia
Target Mont-Blanc applications

- Real applications currently running in PRACE Tier-0 systems or National HPC facilities
 - **YALES2**: Fluid Dynamics
 - **EUTERPE**: Fluid dynamics
 - **SPECFEM3D**: Seismic wave propagation
 - **MP2C**: Multi-particle collisions
 - **BigDFT**: Electronic structure
 - **QuantumESPRESSO**: Electronic structure
 - **PEPC**: Coulomb + gravitational forces
 - **SMMP**: Protein folding
 - **ProFASI**: Protein folding
 - **COSMO**: Meteorological modeling
 - **BQCD**: Quantum ChromoDynamics
Project results

• Prototype HPC system based on European embedded processors
 • Demonstrate potential of embedded technology for HPC
 • Target maximum power efficiency
 • Limited by currently available technology

• Design of a next-generation system
 • Full scale system paving the way towards Exascale computing
 • Proposal and definition of the required technologies to achieve it

• Open source system software stack
 • Operating system, runtime libraries, scientific libraries, performance tools

• Up to 11 full-scale scientific applications
 • Capable of exploiting the benefits of this new class of HPC architectures