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What is an Ogre?

The Berkeley Dwarfs [1] were an important step to define an exemplar set of parallel (high
performance computing) applications. The recent NRC report [2] gave Seven Computational Giants Of
Massive Data Analysis which make a good start to define critical types of data analytics problems. We
proposed [3] Ogres -- an extension of these ideas based on an analysis by NIST of 51 big data
applications [4]. Big Data Ogres provide a systematic approach to understanding applications, and as such
they have facets which represent key characteristics defined both from our experience and from a bottom-
up study of features of several individual applications. The facets capture common characteristics which
are inevitably multi-dimensional and often overlapping. We note that in HPC, the Berkeley Dwarfs were
very successful as patterns but did not get adopted as a standard benchmark set. Rather the NAS Parallel
Benchmarks [5], Linpack [6], and (mini-)applications played this role. This suggests that benchmarks do
not follow directly from patterns, but the latter can help by allowing one to understand breadth of
applications covered by a benchmark set.

Ogres have Facets

We suggested that Ogres would have properties that we classified in four distinct dimensions or
views. Each view consists of facets; when multiple facets are linked together, they describe classes of big
data problem represented as an Ogre. One view of an Ogre is the overall problem architecture which is
naturally closely related to although different from the machine architecture needed to support data
intensive application. Then there is in more detail the execution (computational) features view that
describing issues such as I/O versus compute rates, iterative nature of computation and the classic V’s of
Big Data defining problem size, rate of Change etc. The data source & style view includes facets
specifying how the data is collected, stored and accessed. The final processing view has facets which
describe classes of processing steps including algorithms and kernels. Ogres are specified by the
particular value of a set of facets linked from the different views. The views contain the following facets.

Facets in Problem Architecture View: Pleasingly Parallel; Classic MapReduce; Map-Collective; Map
Point-to-Point (graphs); Shared memory (as opposed to distributed parallel algorithm); Global Analytics;
Single Program Multiple Data SPMD; Bulk Synchronous Processing BSP; Fusion; Dataflow?; Agents;
Orchestration (workflow)

Facets in Execution View: Performance Metrics; Flops per Byte; Communication Interconnect;
Communication Synchronization; Dynamic?; Regularity; Iterative?; Volume; Velocity; Variety; Veracity;
Data Abstraction(key-value, bag of words, spatial, vectors, sequence, graph); Metric Space or not?; O(N?)
or O(N)?; Libraries needed?

Facets in Data Source&Style View: SQL/NoSQL/NewSQL?; Enterprise data model (warehouses);
Files/Objects?; HDFS/Lustre/GPFS?; Archive/Batched/Streaming; Shared/Dedicated/
Transient/Permanent; Metadata/Provenance; Internet of Things; HPC Simulations; Geographic
Information Systems;

Facets in Processing View: Micro-benchmarks; Local Analytics; Recommender Engine;
Search/Query/Index; Classification; Learning; Linear/Quadratic Programming; Combinatorial



Optimization; Streaming; Alignment; Machine Learning; Nonlinear Optimization; Least Squares;
Expectation Maximization; Linear Algebra Kernels; Graph Algorithms; Visualization

In our language instances of Ogres can form benchmarks. One can consider composite or atomic
(simple, basic) benchmarks and for example, a clustering benchmark is an instance of an Ogre with a
Map-Collective facet in the Problem Architecture view and the machine learning facet in the Processing
view. The Execution view describes properties that could be different for different clustering algorithms
and would often be measured in benchmarking process. Note a simple benchmark like this could ignore
the data source&style view and just be studied for in memory data. Alternatively we can consider a
composite benchmark linking clustering to different data storage mechanisms. A given benchmark can be
associated with multiple facets in a single view; for example clustering has other problem architecture
facets including SPMD, BSP, and Global Analytics.

Particular Benchmarks as instances of Ogres

Our approach suggests choosing benchmarks from Ogre instances that cover a rich range of
facets. At this stage, we give some examples rather than trying to be comprehensive. Note that kernel
benchmarks are instances of Ogre Processing facets and this is where the NAS parallel benchmarks or
TeraSort [7] would fit. On the other hand, micro benchmarks such as MPI ping-pong and SPEC [8] are
measures of Ogre execution facets.

Baru and Rabl’s tutorial [9] has a thorough discussion of benchmarks such as the TPC series [10],
HiBench [11], Yahoo Cloud Serving Benchmark [12], BigDataBench [13], BigBench [14] and Berkeley
Big Data Benchmark [15] that quantify the Ogre data source&style facets.

The processing view has the well-known Graph500 [16] benchmarks (and associated machine
ranking) but of course libraries like R [17], Mahout [18] and MLIib [19] also include many candidates for
analytics benchmarks. We are part of a recent NSF project from the Dibbs (Data Infrastructure Building
Blocks) program where one can use Ogres to classify the Building Blocks that are focus of this program.
Below we list a few examples of problems we are studying with full set available at [20, 21]. Note each
problem below can provide benchmarks for many different execution view facets.

Graph Problems: Community detection, Subgraph/motif finding, Finding diameter, Clustering
coefficient, Page rank, Maximal cliques, Connected component, Betweenness centrality, Shortest path
which are instances of the Graph Algorithm facet of the processing view and also of either the Map Point-
to-Point and/or Shared memory facets in the Problem architecture view.

Spatial Analytics: Spatial relationship based queries from the Search/Query/Index and MapReduce
facets; Spatial Clustering from Global Machine Learning, Map-Collective and Global Analytics facets;
Distance based queries from Pleasingly Parallel and Search/Query/Index facets. These 3 benchmarks all
have the spatial data abstraction facet.

Machine Learning in general and for image processing: several Clustering algorithms illustrating
O(N), O(N?), and Metric (non-metric) space execution view facets; Levenberg-Marquardt Optimization
and SMACOF Multi-Dimensional Scaling with Linear Algebra Kernels and Expectation maximization
facets from processing view; TFIDF Search and Random Forest with Pleasingly Parallel facets. All of
course twinkle with the machine learning facet of the processing view.

Ogre-Driven Benchmarking
The suggested process is to examine current benchmarking and list facets they cover. Then
augment with new benchmarks to cover those facets not addressed in initial choice. One must of course



also address the many well studied general points of benchmarking such as agreeing on datasets with
various sizes (Volume facet in execution view); requiring correct answers for each implementation and
choice between pencil and paper and source code specification of benchmark.
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