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1 Introduction	  
New generations of scientific instruments and sensors are producing unprecedented amounts of data in domains as 
diverse as environmental modeling and disaster response, critical infrastructure management, smart grids and 
intelligent transportation systems, astronomy and astrophysics, chemistry and biology, and human-computer 
interaction. Rich tools and techniques for data analysis have emerged in each of these domains, which a recent NRC 
report described as “Seven Computational Giants of Massive Data Analysis” that span basic statistics, generalized 
N-body problems, graph-theoretic computations, linear algebra, optimizations, integration, and alignment problems. 
Although many of these domains exploit HPC systems, they do so in a largely separate ecosystem, disjoint from the 
software ecosystem of traditional HPC domains. We	  believe	  that	  a	  Scalable	  Ecosystems	  for	  Data	  Science	  (SEDS)	  is	  
needed	   to	   enable	   and	   accelerate	   data-‐driven	   scientific	   inquiry	   by	   integrating	   “best	   of	   breed”	   techniques	   from	  
machine	  learning,	  big	  data	  analytics,	  and	  HPC,	  augmented	  with	  innovative	  new	  algorithms	  and	  software. 

Technical and economic synergies exist among the challenges facing data-intensive scientific research and high-
performance computational modeling, and advances in both are needed for future breakthroughs. An integrated 
environment would further scientific understanding, improve the performance of machine learning algorithms and 
software, stimulate creation of new tools and techniques to facilitate deployment of a common cyber infrastructure.  

The SEDS approach is founded on the premise that algorithms should combine best practices in HPC and data 
science, because many algorithms are expressed in the mathematics of linear algebra and, for graph problems, 
sparse matrices. A key approach is combining the best elements of HPC, clouds, and data-intensive platforms with 
new middleware. Further, SEDS approach envisions that a process for research that implements a virtuous cycle 
that creates a series of Discovery	  Appliances embodying research ideas and innovations from algorithms, applications, 
and hardware. We	   believe	   that	   only	   by	   addressing	   the	   entire	   stack—applications,	   algorithms,	   programming	   and	  
runtime	  systems,	  and	  hardware—can	  one	  succeed	  in	  revolutionizing	  computational	  and	  data	  science.	  

 
2 SEDS	  Strategy	  
Current HPC platforms are architected and configured for floating-point-intensive applications with regular memory 
access patterns, tightly coupled interprocessor communication, and modest input/output demands. By contrast, big data 
platforms target applications requiring high-capacity storage and I/O, along with a larger fraction of integer operations 
and more irregular memory access patterns. HPC designs minimize communication latency with expensive networks for 
tight coupling, whereas for big data analysis economics have largely dictated use of commodity networks with higher 
communication latency. The SEDS strategy is based on a simple premise and conviction: a revolution in 
computational and data science is possible only by integrating applications, algorithms, programming and 
runtime systems and hardware in a common ecosystem. These Discovery Appliances, the primary software 
packaging and distribution mechanism for the results of SEDS approach, can be structured as software containers 
2.1 System	  Software	  and	  Infrastructure	  
Today’s HPC systems have software stacks, system architectures, and operational policies that often limit their 
applicability to a narrow range of computationally intensive applications. Consequently, users with data-analysis tool 
chains and complex workflows all too often simply ignore the HPC community and focus on readily available tools, 
many of which are not designed for scalability to large platforms or petabytes of data. To date, neither community has 
fully embraced the shifting nature of algorithm optimization, driven by manycore energy constraints and data movement 
costs. There is an opportunity to re-imagine a convergence environment by leveraging major hardware and software 
technology shifts to create a new  “software defined scientific computer” for the larger research community.  
2.1.1 Convergence	  Architectures	  
Classic HPC architectures focus on floating point performance, memory and interconnect bandwidth, file system 
resilience, and a very low mean-time to interrupt for parallel computations, whereas systems designed for data analysis 
often focus on aggregate I/O operations and trade raw computing performance for data capacity. Fortuitously, several 
technology shifts are bringing these two architectures closer together. First, the NVRAM capacity, reliability and power 
now make it economically feasible to include high-capacity NVRAM in all nodes, allowing in situ analysis. Second, 
shared node address spaces allow adaptive mapping of computations to maximize performance. Third, software-defined 
networking now supports data center network traffic shaping and prioritization, allowing bandwidth allocation among 
competing network data flows. At the same time, HPC architectures offer very high performance interconnects with low 
latency. Finally, operating system virtualization via containers now supports creation of tailored, domain-specific 
software stacks that can be co-resident on a single node. Combining these technologies from HPC systems and data 
analysis systems will provide revolutionary new capabilities.  



2.1.2 Hybrid,	  Customized	  Software	   	  
Most current HPC systems operate as space-shared resources. Furthermore, the software stack is mostly static; 
packages are updated only when system administrators respond to community pressure. These two operational choices 
make interactive data analysis, persistent services, and domain-specific software stacks difficult. Data scientists need 
shared access to handfuls of nodes for data exploration and long-term access for continuous processing of real-time 
data streams and providing persistent data services to constituent scientific community. In addition, analysis workflows 
require web technologies, Java, Python, and other tools from the big data middleware ecosystem (e.g., tools like 
Zookeeper, Storm, Hadoop, Spark, Pig (MapReduce) and Hbase (NOSQL )) that are often not supported in HPC 
systems.  
2.1.3 Elastic	  Data	  Management	  
Data sharing is a key part of data science workflows; teams load, clean, analyze, and then publish data sets. These data 
sets are no longer simple file sets, but rather active query environments, from which scientists request data slices or 
annotate a database by adding new values. To enable this always-on analysis model, scalable data management 
technologies for heterogeneous and unstructured data are needed. Examples include MongoDB, Elastic Search, SciDB, 
various forms of Hadoop/HDFS that must interoperate with their HPC counterparts: parallel file systems, MPI and data 
formats such as HDF and NetCDF. Query processing and analysis libraries atop these layers need to be developed, 
which in turn will drive analytics and data mining algorithms.  
2.1.4 Storage	  and	  File	  System	  Consistency	  
One of the keys to high performance file systems is matching the data locality and consistency model provided by 
the file system to application needs. In contrast to HPC systems, cloud service operators and big data analysis 
software systems have adopted weaker consistency models [8], which have provided much better performance and 
resilience. By contrast, HPC models have application-oriented consistency models for I/O more in line with 
application needs, and some ad hoc systems provide weaker consistency but higher performance.  

 
2.2 Application	  and	  Algorithm	  Co-‐design	  
Achieving the SEDS goal will require a co-design effort in which domain experts in applications, algorithms, and 
software work cooperatively resulting in a continuous virtuous co-design cycle that enables exploration and prototyping 
of hardware and software architectures with variety of applications and algorithms.  
2.2.1 Illustrative	  Domain	  Engagement	  and	  Representative	  Applications	  
Internet of Things: Data streaming is exemplified most clearly by the Internet of Things (IoT). Estimates suggest 
there will be over 20 billion such Internet-connected devices by 2020. IoT applications include identifying machine 
faults, managing traffic flow, optimizing energy production and distribution (smart grids), understanding urban 
dynamics and services (smart cities), agricultural and environmental ecosystems, and personal monitoring. Internet-
connected scientific instruments such as light sources, telescopes, and satellites bring different challenges, as the 
data originates from a smaller number of larger instruments.  

Materials Science and Engineering: Materials science and engineering innovations enable more efficient 
batteries, stronger and lighter materials, newer materials for mobile devices and sensors, and new drugs and medical 
delivery mechanisms. Traditionally, materials research has been experimentally focused, though simulations are now 
critical to identifying newer materials and structures. Advanced materials science research instruments such as the 
Advanced Photon Source (APS) now produce terabytes of data in single experiment. Deep machine learning and 
predictive techniques are critical to deriving insights from this data.  
Astronomy/Cosmology: Modern astronomy combines massive data inputs from both new experiments and 
outputs from high-resolution simulations, and then apply additional computing to draw accurate and testable 
conclusions. To quantify cosmological constraints, it must reliably detect, measure, and classify billions of sources 
from imaging data. Next, the galaxy distances must be accurately estimated, and distribution and temporal evolution 
modeled. Finally, Large numbers of simulated, synthetic galaxy catalogs, similar in size and complexity to the actual 
galaxy catalog, must be generated and processed to quantify any systematic biases in the data reduction pipeline and 
to allow reliable error measurements. The required spatial resolution means that brute force techniques for computing 
even the simplest statistical quantities cannot be used. Scalable analytics kernels and functions must be developed 
Computational Social Science and Network Science: The availability of big data, collected in real time from 
social media, smartphones and the web), along with powerful computational resources, now allow researchers to study 
human behavior in new and unprecedented ways. Blending techniques from machine learning, network science, natural 
language processing, and time-series analysis, allows researchers to model and predict how individuals behave, connect, 
produce and consume information, and how they make decisions affecting their online and offline worlds. Potential 
applications span national security, emergency management, crime tracking and fighting, marketing strategies, election 
forecasting, and health monitoring. To enable such applications, researchers must store and query heterogeneous 
historical data and train large, models with network interactions found by machine learning.  


