
Achieving Genericity and Performance using Embedded Domain Specific
Languages

Vincent Reverdya,b, Jean-Michel Alimia

aLUTh, CNRS, Observatoire de Paris, Univ. Paris Diderot; 5 place Jules Janssen, 92190 Meudon, France
bDepartment of Astronomy, University of Illinois at Urbana-Champaign, MC-221, 1002 West Green Street, Urbana, IL 61801, USA

Abstract

We describe the design and use of Embedded Domain Specific Languages (EDSL) to achieve both genericity and
performance required by modern simulation codes, taking an example in cosmology. We highlight the importance of
good software architectures to tackle the increasing complexity of these codes, in a context of an increasing hardware
heterogeneity and in a context in which physicists want to explore more theoretical models than ever.

Key words: High Performance Computing, Exascale, Cosmological simulation, Programming Languages

1. Why exascale and big data?

Let us ask the question “In the first place, why do
we need exascale and big data approaches?”. Only as
a domain expert in cosmology, running on one million
nodes to achieve one exaflop or analyzing petabytes of
data are not goals in themselves. Asking “Why?” is ask-
ing for scientific motivations. And yes, of course, there
are plenty of scientific motivations for exascale and big
data. Getting more computing power provides physi-
cists with the ability of:
• running bigger simulations to probe more scales in

time and in space
• running more realizations for statistical purposes
• exploring parameter spaces with more accuracy
• enrich simulations with more physical phenomena
• test for the emergence of complexity with ab initio

approaches
and having the possibility of running analyses on a very
large number of heterogenous datasets help them to re-
fine models and search for anomalies. Consequently,
the accumulation of data in physics and their analyses
is not the end of the story. It is the starting point of a
deeper understanding of the processes we are interested
in. That being said, as we have relevant science cases
for exascale and big data, the next question we may ask
is about the technical means that will be necessary to get
there. And this is where problems arise because it may
require a deeper knowledge of hardware and software
from domain experts.

2. How will we achieve exascale computing and big
data analyses?

If we are looking to current trends in high perfor-
mance computing, it is very likely that we will not get to
exascale with standard CPUs. The most powerful ma-
chines are equiped with accelerator cards, either many-
cores or GPUs. Getting the best out of these hetero-
geneous hardware architectures requires more and more
knowledge: networking for inter-node communications,
asynchronism and threading for intra-node paralleliza-
tion or data alignment techniques to maximize SIMD
efficiency. Reaching exaflop is one problem, reaching
exascale is a different one. And if we do not have a
technical breakthrough in the coming years regarding
to memory, the data transfer rate between memory and
the central processing units is likely to become one of
the most limiting factor of computing. In other terms:
computing time could be ultimately considered as neg-
ligible compared to data transfer time. Solving these
kind of issues require an understanding of data struc-
tures, memory models, cache misses and branch predic-
tion. To summarize: designing exascale scientific codes
will not be an easy task. And if, in the same time, physi-
cists want to increase the complexity of their codes to
solve new interesting problems, it will become a nearly
impossible one. This raises the question of how sci-
entific applications are written, how languages are de-
signed and what kind of software architecture are cho-
sen.

Preprint submitted to Elsevier January 26, 2015



3. Issues with standard programming models

In order to address these problems, a first (proba-
bly naive) approach would be to bring together com-
puter scientists, applied mathematicians and physicists
together to create an ideal application to answer a par-
ticular scientific question. The major issue here, is that
the implementation time can exceed by several orders of
magnitude the life time of the scientific question. Scien-
tific codes are not static: the underlying models are not
fixed once for all and are intended to evolve during the
application lifetime. If one looks to an existing scien-
tific application, it can generally identify four problems
regarding to software architecture.

The first one is related to the interwining of com-
pletely different aspects: physics, numerical algorithm,
and optimization/parallelization. As these aspects are
interdependent, it becomes more and more difficult, as
the software grows in complexity, to change just one as-
pect of the code, for example, the physical model. This
could be easily illustrated by a simulation code based on
a mesh in which the physical variables are stored once
for all in separate global arrays. When one wants to
add a new physical variable it needs to modify all the
internal loops of the code. The interdependence of the
physics and algorithms makes the code difficult to mod-
ify.

The second one, which is a consequence of the first
one, is the non-commutativity of modifications: two dif-
ferent scientific teams starting from the same original
version of a scientific code but implementing changes
in different orders (e.g. changing the model, or chang-
ing the parallelization) are unlikely to be able to merge
their versions in the end. This leads to an increasing
number of forks of scientific codes.

The third one is the problem of expertise: as all the
aspects are intertwined, it is complicated to improve a
particular element of the code, without understanding
the rest of it. As a consequence, it is difficult to make
the most of people with different backgrounds. For ex-
ample, a software in which the mesh structure and the
physical solvers are intertwined at the most fundamental
level is barely modifiable by a non-domain specialist.

And the last, and maybe the most problematic one, is
the inability to manage the combinatorial explosion of
the lines of code. In fact, with traditional programming
models, to achieve the best performances for any combi-
nation of P data types, Q algorithms and R architectures
the required lines of codes (SLOC) scales as:

SLOC ∝ O (P × Q × R) (1)

In other words, if one wants to achieve the best possi-
ble performance, it will need to write all the versions
of all functions, leading to a combinatorial explosion of
code complexity. As an example, a software based on
two data types (scalars and vectors), providing three al-
gorithms (sum, mean value, maximum norm) for three
architectures (sequential, multicore threading, GPUs)
may require up to eighteen times more lines of code than
a single combination of these elements. Consequently,
each research team tends to only implement the specific
case it really needs, leading to a loss of genericity and
long term maintainability.

4. A case for Embedded Domain Specific Languages

In the same manner as one could try to optimize an
algorithm, one can wonder whether it would be possible
to manage code complexity by changing the way the
number of SLOC scales:

SLOC ∝ O (P + Q + R) (2)

Converting the original product to a sum is the task
of a compiler: taking different pieces of codes, putting
them together in a coherent way and optimizing the re-
sult at the assembly level. Doing so, it solves the above
mentioned issues of standard programming models by
taking apart the different aspects of codes, therefore let-
ting the expert to focus on their domain of expertise and
letting the compiler generating the glue code to con-
struct the executable. Instead of bringing together com-
puter scientists, applied mathematicians and physicists
to write the application, they can cooperate at a more
abstract level: the software architecture level.

Technically, designing a language and a compiler for
a particular domain is not an easy task. In fact, there
are three possibilities to solve the four problems: (i) to
create a Domain Specific Language (DSL) from scratch,
to create a precompiler or (ii) a language translator and
(iii) to create an Embedded Domain Specific Language.
The first possibility offers more flexibility but as the
scientific targetted communities can remain small, long
term maintenance and high quality optimizations can be
difficult to achieve. The second one consists in writing
a program which will translate a language dedicated to
a particular application into a more general language.
It can be, for example, to automatically generate code
for matrix operations. The community remain small,
but implementing a translator is far easier than imple-
menting a whole compiler. But it can deeply modifies
the compilation process. The third one directly incor-
porate itself in an existing language, being completely

2



transparent for the final user. It is this third possibil-
ity that we focus in this ”white paper”. The general
idea is to implement a language inside another language
which will act as an active library in between the user
code and the assembly code. Languages like C++ or D
are particularly adapted to these tasks. Using template
metaprogramming, compile-time reflection, and gener-
ative programming, one can either precompute results at
compile-time or control the instanciation process using
the properties of types thus achieving both performance
and genericity.

5. Lessons learned from experimentation

We have successfully created an EDSL in C++11
to implement a 3D raytracing code based on the equa-
tions of general relativity in a weak-field metric. In this
code, the underlying data structures, the integrators, the
physics equations to be solved, and the parallelization
algorithms are implemented separately. The combina-
tion of these elements is done at the end to generate the
raytracing code, but other applications as the develop-
ment of a full Cosmological code, are possible with no
modifications of these fundamental bricks.

It relies heavily on template metaprogramming to
perform operations during the compilation process.
These operations can be of two types: either operations
on values or operations on types. The idea of value
metaprogramming is to compute as much as possible
at compile-time to avoid unnecessary computations at
run-time. It can be for example to simplify as much as
possible series expansion, keeping the lowest possible
number of operations for execution. Or it can be to pre-
compute the geometric properties of a structured mesh
only knowing the number of dimensions, therefore dra-
matically improving performances relying on compiler
optimizations. But it implies that the final user have to
recompile its program every time it changes the num-
ber of dimension. The idea of type metaprogramming
is to control the instantiation process using properties
of types. In practice it consists to branch to portions of
codes when a type satisfies certain characteristics.

In the case of our 3D raytracing code, we have been
able to produce generic meshes and generic integrators,
acting in the same way no matter what the physical con-
tents is nor the integrated vectors are. In our solution,
the hyperoctree used to partition the physical space is
effectively implemented separately from the containers
of the physical variables (for a cosmological simulation:
the matter density ρ, the gravitational potential Φ and
its derivatives. . . ). As the second one can be passed as a
template parameter to the first one in the user code, the

compiler can generate the optimal tree for the specific
underlying physics at compile-time. The same kind of
techniques can be used to implement separately the par-
allelization schemes.

By doing so, EDSL creators provide application cre-
ators fundamental generic pieces of code. Each appli-
cation can combine these pieces in its own way, letting
the compiler to find the best possible implementation
and optimization for the final code. These techniques
have been successfully tested for years by the Boost li-
brary community and our experience let us say that they
can be perfectly used to write scientific codes. Our 3D
raytracing code has been used to analyze the light prop-
agation in the Dark Energy Universe Simulation: Full
Universe Runs on the Curie supercomputer. It managed
without any scalability problems, hundreds of billions
of mesh cells distributed over thousands of CPUs, al-
lowing us to examine the imprints of large scales struc-
tures on cosmological measurements.

6. Conclusion

Standard programming models are unlikely to be able
to manage the increasing complexity of codes coming
from both the hardware heterogeneity and the physics
to explore in the exascale and big data era. Focusing
on abstractions and on domain specific languages one
can reduce this complexity at the programming level
achieving both genericity and performance to get the
most out of the machines of the next generation. This is
still an exploratory direction, but as the C++ committee
seems to push in the direction of generic programming
and compile-time reflection, it is worth to be considered
with attention.

3


