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Abstract—Several fundamental changes in technology indicate
domain-specific hardware and software co-design is the only path
left. In this context, architecture, system, data management, and
machine learning communities pay greater attention to innovative
big data and AI algorithms, architecture, and systems. Unfortu-
nately, complexity, diversity, frequently-changed workloads, and
rapid evolution of big data and Al systems raise great challenges.
First, the traditional benchmarking methodology that creates a
new benchmark or proxy for every possible workload is not
scalable, or even impossible for Big Data and AI benchmarking.
Second, it is prohibitively expensive to tailor the architecture to
characteristics of one or more application or even a domain of
applications.

We consider each big data and AI workload as a pipeline
of one or more classes of units of computation performed on
different initial or intermediate data inputs, each class of which
we call a data motif. We propose a scalable benchmarking
methodology that uses the combination of one or more data
motifs—to represent diversity of big data and AI workloads.
Following this methodology, we present a unified big data
and AI benchmark suite—BigDataBench 4.0, publicly available
from http://prof.ict.ac.cn/BigDataBench. This unified benchmark
suite sheds new light on domain-specific hardware and software
co-design: tailoring the system and architecture to characteristics
of the unified eight data motifs other than one or more application
case by case.
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I. INTRODUCTION

The traditional benchmark methodology that creates a new
benchmark or proxy for every possible workload is pro-
hibitively costly and hence not scalable, or even impossible
for Big Data and AI benchmarking. First, there are many
classes of big data and AI applications. Even for Internet
services, there are several important application domains, e.g.,
search engines, social networks, and e-commerce. The value
of big data and Al also drives the emergence of innovative
application domains. Meanwhile, data (sizes, types, sources,
and patterns) have a great impact on workload behaviors
and performance significantly [1], [2], so comprehensive and
representative real-world data sets should be included.Second,
at an earlier stage, it is usually difficult to justify porting

a full-scale end-to-end Big data or AI application to a new
computer system or architecture simply to obtain a bench-
mark number [3]; while at a later stage, kernels alone are
insufficient to completely assess the performance potential
of a new system or architecture on real-world data sets
and applications [3]. Meanwhile, the benchmarks should be
consistent across different communities for the co-design of
software and hardware. Third, the correctness of results and
performance figures must be easily verifiable [3]. To some
extent, too complex workloads, i.e., full-scale end-to-end Big
Data or Al applications raise difficulties in reproducibility and
interpretability of performance data [1].

As modern big data and Al workloads are not only diverse,
but also fast changing and expanding, it also raises great chal-
lenges in domain-specific hardware and software co-design.
Even the agile hardware development methodology and tools
are adopted [4], it is prohibitively expensive to tailor the
architecture to characteristics of one or more application or
even a domain of applications, and hence building domain-
specific hardware and software systems case by case should
be avoided.

This paper presents our joint research efforts on a scalable
and unified Big Data and Al benchmarking suite with several
industrial partners. On the basis of our previous work [1]
that identifies eight data motifs—taking up most of the run
time among a wide variety of big data and Al workloads, we
propose a scalable benchmarking methodology that uses the
combination of one or more data motifs—including Matrix,
Sampling, Transform, Graph, Logic, Set, Sort and Statistic
computation to represent diversity of big data and Al work-
loads. Our benchmark suite includes micro benchmarks, each
of which is a single data motif, the component benchmarks,
each of which consists of the combination of one or more
data motifs with different weights in terms of runtime, and
end-to-end application benchmarks, which are combinations
of component benchmarks.

Following this methodology, we present a unified big data
and Al benchmark suite—BigDataBench 4.0, publicly avail-



able from http://prof.ict.ac.cn/BigDataBench. BigDataBench
4.0 provides 13 representative real-world data sets and 47
big data and AI benchmarks of seven workload types: online
service, offline analytics, graph analytics, Al, data warehouse,
NoSQL, and streaming. Also, for each workload type, we pro-
vide diverse implementations using state-of-the-art and state-
of-the-practise software stacks. Data varieties are considered
with the whole spectrum of data types including structured,
semi-structured, and unstructured data. Using real data sets as
the seed, the data generators [5] are provided to generate the
data with a specific scale.

II. BIGDATABENCH 4.0: BIG DATA AND Al BENCHMARK
SUITE

Circling around the data motifs identified from these ap-
plication domains, we define the specifications of micro
benchmarks—each of which is a single data motif, component
benchmarks—each of which is a combination of data motifs
with different weights, and application benchmarks—each of
which represents an end-to-end applications. On the basis of
the data motif-based benchmarking methodology, we make
benchmark decisions and build BigDataBench 4.0. Please note
that due to the space limitation, the detailed methodology
and decisions about BigDataBench 4.0 are illustrated in our
technical report [6].

1) Workloads Diversity: After investigating fundamental
components in application domains, we provide a suite of
micro benchmarks and component benchmarks. Totally, Big-
DataBench 4.0 provides 13 representative real-world data sets
and 47 big data and Al benchmarks of seven workload types:
online service, offline analytics, graph analytics, Al, data
warehouse, NoSQL, and streaming.

For big data, we provide diverse workloads covering
data mining, machine learning, natural language processing
and computer vision techniques. For Al, we identify rep-
resentative and widely used data motifs in a wide vari-
ety of deep learning networks (i.e. convolution, relu, sig-
moid, tanh, fully connected, max/avg pooling, cosine/batch
normalization and dropout) and then implement each sin-
gle motif and motif combinations as micro benchmarks
and component benchmarks. The AI component bench-
marks include Alexnet [7], Googlenet [8], Resnet [9],
Inception_Resnet V2 [10], VGG16 [11], DCGAN [12],
WGAN [13], Seq2Seq [14] and Word2vec [15], which are
important state-of-the-art networks in Al

2) Representative Real-world Data Set: To cover a full
spectrum of data characteristics, we collect 13 representative
data sets, including different data sources (text, table, graph,
and image), and data types of structured, un-structured, semi-
structured. Further, big data generation tools are provided to
suit for different cluster scales, including text, table, matrix
and graph generators.

3) State-of-the-art Techniques: To perform apple-to-apple
comparisons, we provide diverse implementations using the
state-of-the-art techniques. For offline analytics, we provide
Hadoop, Spark, Flink and MPI implementations. For graph

analytics, we provide Hadoop, Spark GraphX, Flink Gelly and
GraphLab implementations. For Al, we provide TensorFlow,
Caffe and PyTorch implementations. For data warehouse, we
provide Hive, Spark-SQL and Impala implementations. For
NoSQL, we provide MongoDB and HBase implementations.
For streaming, we provide Spark streaming and JStorm imple-
mentations.
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