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Outline	

q Examples of indexing���
    needs in scientific domains	

q  Scientific Indexing���
    requirements	


q Bitmaps indexing as a���
   promising technology	
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Example of Big 
Data in 
Science���
���
Large Hadron 
Collider: to find the 
God particle	


•  15 PB per year – sensors capable of 
140PB/s	


•  27 km tunnel	

•  ~10,000 superconducting magnets	

•  Operating temperature 1.9 Kelvin	

•  Construction cost:	


US$9Billion	


•  Power consumption: ~120 MW	
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Typical Event Figures	
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STAR: Solenoidal Tracker At RHIC 
RHIC: Relativistic Heavy Ion Collider 
 
LHC: Large Hadron Collider 
Includes: ATLAS, CMS, … 

Experiment 
# members 
/institutions 

Date of 
first data 

# events/ 
year volume/year- 

TB 
STAR   350/35 2001 10 8 -10 9     500 
PHENIX   350/35 2001 10 9     600 
BABAR   300/30 1999 10 9       80 
CLAS   200/40 1997 10 10     300 
ATLAS 1200/140 2008 10 10   5000 

A mockup of 
An “event” 



What are the indexing challenges?	

q  Generate large amounts of raw data – referred to as “events”	


²  Collected from simulations and experiments	

q  Post-processing of data	


²  Identify elements in data (find particles produced, tracks)	

²  generate summary variables per event	


o  e.g. momentum, no. of pions, transverse energy	

o  Number of variables is large (50-100)	


q  Analyze data	

²  use summary variables to characterize events	

²  extract subsets from the large dataset	


o  Need to access events based on partial ���
variable specification (range queries)	


o  e.g. ((0.1 < AVpT < 0.2) ^ (10 < Np < 20)) v (N > 6000)	

q  Challenges	


²  Search over billions of events	

² Multi-variable search, but only over a subset of the variable	

²  Type of query: a needle-in-the-haystack	

²  Another type of query: larger subsets for statistical properties	

²  Search over numerical values (integers, floating point)	
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Combustion simulation example	

q  Combustion simulation: 1000x1000x1000 mesh with 100s of chemical species over 

1000s of time steps – 1014 data values	
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q  This is an image of a single variable���
(temperature)	


q  What’s needed is search over���
multiple variables, such as:	


      Temperature > 1000���
AND pressure > 106���
AND HO2 > 10-7 AND HO2 > 10-6	


q  Challenges	

q  Multi-variable queries from a 

subset of variables	


q  Search over numerical values	

q  Identify large number of regions	




Gene functional annotation	
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Sequence	  similarity	  
Gene	  context	  provide	  informa7on	  for	  the	  func7on	  of	  genes.	  

Func7onally	  related	  genes	  are	  frequently	  found	  in	  the	  same	  
chromosomal	  neighborhood.	  

350nt	  50nt	  

50nt	   250nt	  

50nt	  

•  Casse>e	  Defini7on	  
•  Parallel	  or	  Divergent	  orienta7on	  
•  Distance	  <	  300nt	  



Conserved chromosomal cassettes	
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•  Genes are replaced by protein families (COGs, pfams, IMG ortholog 
families).  One gene à multiple families. 

•  We refer to these as “properties”, such as “cog0087 cog0088 
cog0089 pfam00181 pfam00189 pfam00203 pfam00237” 

•  Boxes that share two cassettes and two genes, if the genomes are 
distant phylogenetically (more than species) 

•  E.g. for black box: blue and red are 1st step relatives. 

H	  

G	  

F	  

E	  

D	  

C	  

B	  

A	  

XI	  X	  IX	  VII	  VI	  V	  IV	  III	  II	  I	  



Why is this problem hard?	

q Size	


² 100 million cassettes, with properties from about 25,000 possible values 
(currently).	


² Total number of elements: 2.5 x 1012	


Challenge	

q Query types	


² Given a cassette find all cassettes that have the same properties in 
common	

o  That is a massive multi-value search	


² Given a cassette find all cassettes that have 2-or-more properties in 
common (in general k-or-more)	

o  Explosive search of all possible combinations of 2-or-more	
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Big Data Indexing Requirements	

q  Speed of search	


²  Search over billions – trillions data values in seconds	


q Multi-variable queries	

² Be efficient for combining results from individual variable search results	


q  Size of index	

²  Index size should be a fraction of original data	


q Granularity 	

² Ability to produce smaller indexes when granularity can be reduced, such as 1 

decimal points, for example	


q  Parallelism	

²  Should be easily partitioned into sections for parallel processing	


q  Speed of index generation	

²  For in situ processing, index should be built at the rate of data generation	
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Scaling simulations generates ���
a data volume challenge (PBs)	
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Simula7on	  Machine	   Analysis	  
Machine	  

Archive	  

Parallel	  Storage	   Shared	  
storage	  

Experimental/	  
Observa7onal	  data	  

subset	  

su
bs
et
	  

Analysis	  
Machine	  

Analysis	  
Machine	  

Simula<on	  Site	  	   Analysis	  Site	  (i)	  

Exp	  Site	  	  



What Can be Done?	
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q  Perform some data analysis and visualization on simulation machine (in-situ)	

q  Reduce Data and prepare data for further analysis (in-situ)	


Simula7on	  Machine	  
+	  Data	  Reduc7on	  and	  Indexing	  
+	  Analysis	  and	  Visualiza7on	  

Analysis	  
Machine	  

Archive	  

Parallel	  Storage	   Shared	  
storage	  

Experimental/	  
Observa7onal	  data	  

Simula<on	  Site	  	   Analysis	  Site	  (i)	  

Exp	  Site	  	  

subset	  

su
bs
et
	  

Analysis	  
Machine	  
Analysis	  
Machine	  



Data Analysis	

q Two fundamental aspects	


² Pattern matching: Perform analysis tasks for finding known or expected 
patterns	


² Pattern discovery: Iterative exploratory analysis processes of looking for 
unknown patterns or features in the data	


q  Ideas for the analysis of Big Data	

² Perform pattern matching  tasks in the simulation machine	


o  “In situ” analysis	


² Prepare data for pattern discovery on the simulation machine, and perform 
analysis on mid-size analysis machine	

o  “In-transit” data preparation	


o  “Off-line” data analysis	
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Index:���
A Data Structure for Accelerating Data Accesses	


q Tree-based indexes	

² E.g. family of B-Trees	

² Commonly used database management systems	

² Sacrifice search efficiency to permit dynamic update	


q Multi-dimensional indexes	

² E.g. R-tree, Quad-trees, KD-trees, …	

² Don’t scale for large number of dimensions	

² Are inefficient for partial searches (subset of attributes)	


q Hashing	

² Predictable performance	

² Good for locating individual data records	


q Bitmap indexes:	

² Good for read-mostly data	

² Handle partial range queries efficiently	

² May have trouble handling data with a large number of distinct values	
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Bitmap index for each variable	
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• Take advantage that index need to be is append only 
• Generate a bitmap for each possible value of each variable 

• (e.g. for 0<Np<300, have 300 bitmaps)  
• compress each bit vector (some version of run length encoding) 
• Need to touch only bitmaps for the specified search 
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Basic Bitmap Index	


A < 2	
 2 < A	
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•  Easy to build: faster than building B-trees 
•  Efficient for querying: only bitwise logical 

operations 
•  A < 2 à b0 OR b1 
•  A > 2 à b3 OR b4 OR b5 

•  Efficient for multi-dimensional queries 
•  Use bitwise operations to combine 

the partial results 
•  Size: one bit per distinct value per object 

•  Definition: Cardinality == number of 
distinct values 

•  Need to control size for high 
cardinality attributes 

•  Main idea:  
•  highly efficient  compression method 
•  Compute friendly – can perform 

operations directly on compressed 
data 



FastBit properties – highly efficient and 
compact	
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Main idea:	

²  Invented specialized compression methods (was patented) that:	


o  Can perform logical operations directly on compressed bitmaps	

o  Excels in support of multi-variable queries 	

o  Can partition and merge bitmaps without decompression – 

essential for parallelization of indexes	


FastBit takes advantage of append only data to achieve:	


²  Search speed by 10x – 100x than best known bitmap indexing methods	


²  On average about 1/3 of data volume compared to 2-3 times in 
common indexes because of compression method	


²  Proven to be theoretically optimal – data search time is proportional 
to size ���
of the result	


Usage	


²  In multiple scientific application in DOE	


²  Embedded into in situ frameworks	


²  Thousands of downloads around the world (open source under ���
source forge), including commercial companies	




Methods to Improve Bitmap Index	

q Compression	


² FastBit compression method: Word-Aligned Hybrid (WAH) code	

² 10x speedup over Byte-aligned Bitmap Code	


q Encoding	

² Multi-level encoding	

² Reduce bitmaps needed for a query	

² 5x speedup	


q Binning	

² Some times we choose to use bins at the fine level to reduce index size	

² Problem: if query falls in the middle of edge bins	

² Solution: Order-preserving Bin-based Clustering (OrBiC)	

² 5x speedup for searching bins	
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Improving Bitmap Indexes: Multi-Level Encoding	


q  The finest-level may be precise or 
binned	


q Coarse levels are always binned	

q  Each coarse bin contains a number 

of fine bins/values	

q Queries can be processed with a 

combination of coarse and fine 
bitmaps	


q Only edge bins need to be resolved 
at the fine level	


q Analysis revealed how to construct 
the coarse level in order to reduce 
the query processing time	
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Two Levels Are Better Than One	


q Prove theoretically that 
the second level needs 
to have only a small 
number of bins (15 ~ 
50 depending on data)	


q Only two levels are 
necessary	


q Result: 5X speedup on 
average (over WAH 
compressed 1-level 
index)	


10X faster	


[Wu, Shoshani and Stockinger 2010]	


20	
April, 2013	




Domain-Specific Challenges – current 
and future	


q Generate index at the rate of data generation in situ	

²  Increase level of parallel processing	

² Perform partial index generation per node	

² Take advantage of local NVRAM	


q Adapt indexing methods to a variety of data models	

²  Irregular grids, geodesic meshes, toroidal meshes	


o  How to linearize the space	

² Multi-level grid, such as adaptive-mesh-refinement (AMR)	


q Use results of index in subsequent operations	

² Statistical summaries	

² Region growing, region overlaps, …	


q Adapt indexing to specialized operations	

² Searches for k-or-more matches	

² Searches based on formulas (plug-in-codes)	
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FastBit in support for Query-Driven 
Visualization	
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Collaboration between SDM and Vis groups 
•  Use FastBit indexes to efficiently select the most interesting data for visualization 

Example: laser wakefield accelerator simulation 
•  VORPAL produces 2D and 3D simulations of particles in laser wakefield 
•  Finding and tracking particles with large momentum is key to design the accelerator 
•  Brute-force algorithm is quadratic (taking 5 minutes on 0.5 mil particles), FastBit time  is 

linear in the number of results (takes 0.3 s, 1000 X speedup) 

 



FastBit adaptation to toroidal meshes	
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•  Extended FastBit indexing capability to search for 
regions of interest defined on toroidal meshes used 
for fusion simulations 

•  Developed algorithms to take full advantages of the 
regularity present in the magnetic coordinates but 
not in the Cartesian coordinates 

•  Much more compact than the general connectivity 
graph: ~ 200 numbers vs. 6 million numbers 

•  Labeling query lines using magnetic coordinates is 
600-1000 x faster than using connectivity graph 

•  Developed new Connected Component Labeling 
algorithm 
–  Recently used in Atmospheric Rivers project 



Adapting to cassette searches	
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Cassette 1 
Cassette 2 
Cassette 3 

Cassette N 

Results:	  (1)	  given	  a	  casse>e,	  search	  all	  casse>es	  with	  the	  same	  proper7es	  
	  Done	  in	  about	  	  0.07	  second	  (using	  ver7cal	  bitmaps)	  

(2)	  Find	  similar	  casse>es	  with	  2	  or	  more	  proper7es	  
	  Done	  in	  about	  10-‐15	  seconds	  (using	  horizontal	  bitmaps)	  
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Ver<cal	  Organiza<on	   Horizontal	  Organiza<on	  



Flame Front Tracking in Combustion	

     Challenges  
 

² Cell identification 
² Identify all cells that satisfy 

   range conditions 

 
² Region growing 
² Connect neighboring 

   cells into regions 

² Region tracking 
² Track the evolution of 

   the features through time 

April, 2013	
 25	


Finding & tracking of combustion flame fronts 



Big Data Indexing Requirements: ���
Bitmap indexing advantage	


q  Speed of search	

²  Search over billions – trillions data values in seconds	


o  Yes, with compute-friendly compression	


q  Multi-variable queries	

²  Be efficient for combining results from individual variable search results	


o  Yes, combining results for each variable as bitmaps is very efficient	


q  Size of index	

²  Index size should be a fraction of original data	


o  Yes, compression of bitmap index is essential	


q  Granularity 	

²  Ability to produce smaller indexes when granularity can be reduced, such as 2 decimal 

points, for example	

o  Yes, binning over multiple values proved very effective	


q  Parallelism	

²  Should be easily partitioned into sections for parallel processing	


o  Yes, if compressed bitmaps can be easily combined (WAH has this property)	


q  Speed of index generation	

²  For in situ processing, index should be built at the rate of data generation	


o  OK for billions of values, but a trillion value index took 10 minutes (still a challenge)	
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Architectural Changes that Could Benefit in 
situ indexing	


q NVRAM on each node	

² Can be used to build partial indexes over multiple time steps	


² Can be used to accelerate in-situ index generation	


q Take advantage of GPUs	

² Assign index generation for each variable to separate GPUs	


q NVRAM between machine and storage system	

² Can be used for generating indexing for post-processing while data is 

streaming out to be stored on disk	
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THANKS!	


FastBit software http://sdm.lbl.gov/fastbit/	

FastQuery software http://goo.gl/iBw6V	


Scientific Data Management group http://sdm.lbl.gov/ 	
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