







Big Data and Extreme Computing for the Square Kilometre Array

Tim Cornwell, Square Kilometre Array

EC: Ben Humphreys, CSIRO

BD: Andreas Wicenec, ICRAR

### The Square Kilometre Array









- 2020 era radio telescope
- Very large collecting area (km²)
- Very large field of view
- Wide frequency range (70MHz 25 GHz)
- Large physical extent (3000+ km)



- International project
- Telescope sited in Australia and South Africa
- Headquarters at Jodrell Bank, UK
- Multiple pathfinders and precursors now being built around the world
- Now entering pre-construction phase

## Phase 1: <u>2016 – 2020</u>: €400M (2007)













SKAI\_Low

SKAI\_Survey + ASKAP

|                              | SKA Element                           | Location |
|------------------------------|---------------------------------------|----------|
| Dish Array                   | SKA1_Mid: 190 x 15m dishes + SPFs     | RSA      |
| Low Frequency Aperture Array | SKA1_Low: 280 Aperture array stations | ANZ      |
| Survey Instrument            | SKA1_Survey : 60 x 15m dishes + PAFs  | ANZ      |

# Phase 2: <u>2020 – 2025</u>: €1.2B (2007)







|                              | SKA Element | Location |
|------------------------------|-------------|----------|
| Low Frequency Aperture Array | SKA2_Low    | ANZ      |
| Mid Frequency Dish Array     | SKA2_Mid    | RSA      |
| Mid Frequency Aperture Array | SKA2_Mid_AA | RSA      |

#### SKA1 data products and transformations





Tuesday, 30 April 13

#### Example of cost model



| Baseline | Ingest     | Calibration | Continuum  | Spectral_Line | Transient  | All         |
|----------|------------|-------------|------------|---------------|------------|-------------|
| 10000    | €213,303   | €4,030      | €73,835    | €105,230      | €4,030     | €400,427    |
| 20000    | €426,607   | €28,955     | €123,701   | €463,022      | €28,955    | €1,071,239  |
| 30000    | €639,910   | €93,987     | €231,008   | €1,123,718    | €93,987    | €2,182,610  |
| 40000    | €853,213   | €218,314    | €415,397   | €2,121,029    | €218,314   | €3,826,267  |
| 50000    | €1,066,516 | €421,021    | €696,314   | €3,481,560    | €421,021   | €6,086,433  |
| 60000    | €1,279,820 | €721,416    | €1,093,516 | €5,227,707    | €721,416   | €9,043,876  |
| 70000    | €1,493,123 | €1,138,602  | €1,626,417 | €7,379,014    | €1,138,602 | €12,775,757 |
| 80000    | €1,706,426 | €1,691,733  | €2,314,500 | €9,952,941    | €1,691,733 | €17,357,332 |
| 90000    | €1,919,730 | €2,399,961  | €3,177,228 | €12,965,347   | €2,399,961 | €22,862,227 |
| 100000   | €2,133,033 | €3,282,435  | €4,234,050 | €16,430,813   | €3,282,435 | €29,362,766 |



- 2019 costs
- Based on four kernel model of processing
- Expect to update this model continuously over preconstruction
- Poor on cost of data movement

#### **Architecture**



- What architectural changes are needed?
  - Tighter integration of storage, computing and networking.
    - The classical split between storage and computing requires that large amounts of data have to be moved even for very little computing.
  - More intelligent, hierarchical object storage and application driven networking
    - Could potentially perform in-storage filtering and/or on-stream transformations.
  - Dynamic integration of several memory and cache levels into intelligent data movement/pre-fetch agents.
  - Cassandra and Hadoop work well for some use cases

#### Workflows



- Describe a forwarding-looking workflow
  - Our workflows are mainly data <u>reduction</u>
    - Ingest, editing, calibration, imaging, source finding, analysis, archiving
    - With some iteration
    - Run constantly (as the telescope observes)
- What software is missing to support your workflow?
  - Tighter integration between data movement services and compute scheduling
  - Observability tools (monitoring) for data flow within systems
  - Something like Infosphere streams, Twitter Storm,...

### Taxonomy



- Outline how you use your data
  - BDEC system is <u>part</u> of the telescope
  - Telescope becomes adaptive to cancel calibration effects
  - Steps are: acquire, edit, calibrate, transform, analyse, with iterative cycles
  - Too much data to allow guiding by humans
  - But analysis step requires some human guidance and performance
  - Analysis rich in visualization, feature identification, catalog queries
  - Survey science

#### Taxonomy



- Data-driven mini-application?
  - Not yet but will be developed
- Cross cutting concerns
  - Advanced I/O optimised data formats (e.g. ADIOS: http://www.olcf.ornl.gov/center-projects/adios/)
  - Usability of systems for astronomers. Barrier to entry is getting ever higher. Astronomers spending more time wrestling with systems and less doing core research.
  - Turnaround time, the ability to do quick iterations on petascale datasets just like we do on gigascale datasets.
    - Fast iteration == productivity

### Taxonomy



#### Data flow

- Waterfall with successive phases of refinement and lossy compression
- Processes simple at beginning of flow, less so at end
- Some phases (calibration and imaging)
  required multiple (10?) passes through data
- Analysis requires long residency of result in "working set": days to weeks
- Arithmetical complexity low throughout

#### Software



- What software are you currently using to manage and explore your data?
  - Software is largely bespoke
    - CASA, CFITSIO, WCSLIB
    - ASKAPSoft
    - SKA expects to spend about 150 FTE-years
- What algorithms and software libraries/tools need development and improvement to address your big data needs?
  - Synthesis calibration and imaging algorithms must scale up ~ 10,000
- Problems without a full solution
  - Fault tolerance

## Interoperability challenges



- Provenance, etc.
  - Well in hand from IVOA work
- Semantics
  - There is a semantics working group in the IVOA and they have produced a complete ontology of astronomical object types
    - http://wiki.ivoa.net/internal/IVOA/IvoaSemantics/ WD\_2007-02-19.pdf
  - All of the IVOA standards use the UCD standard vocabulary.
    - A UCD does not define the units nor the name of a quantity, but rather "what sort of quantity is this?"
  - Implementation slow
  - Need a proper, controlled mechanism of machine-readable semantic tagging of quantities and data objects