BDEC Software Session Report

Leads: Franck Cappello, Satoshi Matsuoka

Scribe: Kate Keahey
Extreme Computing versus Big Data

• Big Data
 – It’s not merely about the size!
 – New interaction patterns with focus on diverse types of data, sophisticated data models, communication and interactivity, community ecosystem baggage, modes of usage, etc.

We started out from different assumptions – then new requirements/opportunities came in – but those assumptions are now hardwired into the design of EC systems
EC vs BD: Application Requirements

<table>
<thead>
<tr>
<th>Extreme Computing</th>
<th>Big Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static/predictable requirements for resources</td>
<td>Volatile/unpredictable requirements for resources</td>
</tr>
<tr>
<td>Non-interactive</td>
<td>On-demand/predictable/controlled response time, often interactive</td>
</tr>
<tr>
<td>Focus on performance</td>
<td>Focus on “productivity”</td>
</tr>
<tr>
<td>Data is private</td>
<td>Data is shared and managed for sharing (e.g., provenance), used collaboratively</td>
</tr>
<tr>
<td>Focus on domain-dependent methods</td>
<td>Include a wider range of methods including domain-independent methods (e.g., statistical methods)</td>
</tr>
</tbody>
</table>
EC vs BD: Models and Systems

<table>
<thead>
<tr>
<th>Extreme Computing</th>
<th>Big Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheduling optimizes provider concerns, e.g., utilization</td>
<td>Scheduling optimizes user concerns, e.g., response time and a range of other QoS constraints</td>
</tr>
<tr>
<td>Resource management focuses on compute</td>
<td>Resource management focuses on multiple resources including compute, memory, storage and network</td>
</tr>
<tr>
<td>Application is the focus of adaptation and optimization</td>
<td>Platform fit is automatic and the focus of optimization</td>
</tr>
<tr>
<td>Assume a static resource model optimizing to fixed assumptions</td>
<td>Assume a dynamic resource model: programming models that adapt to platform change</td>
</tr>
<tr>
<td>Fault tolerance is expensive</td>
<td>Redundancy-based fault tolerance</td>
</tr>
</tbody>
</table>
Stepping Stones: Towards EC/BD convergence

• Sharing the same resources
 – Resource management methods need to evolve so that BD and EC can share resources
 • Dynamic, QoS-aware, multi-aspect, leverage trends towards resource programmability, incentives
 • Knowing and communicating more about the application is key

• Programming models
 – Exploration of more flexible/malleable programming models
 – Resilience: models intolerant of failure versus models based on redundancy

• Security: from coarse-grained security (firewalls) for EC to fine-grained for BD
Domain Testbeds

• Experimental CS Testbeds
 – Chameleon, CloudLab, Grid’5000, FED4FiRE

• Resources exploring the BD management models
 – Comet, JetStream, Bridges, Wrangler

• Industry
 – Amazon, Google

• How about supercomputers?
 – Which ones are amenable for running convergent workload?
Game Changers

• Convergence towards “stepping stones”
• Challenges and demonstrations: software representing an entire system that can be used for BDEC
• Convergence
 – HPC features available in the cloud (HPC)
 – “Cloud” features available on HPC platforms (availability, predictable response time, etc.)
• End of Moore’s Law is a catalyst ;-)}
Towards Convergence: Proposed Actions

• Grand Challenges and Success Stories
 – It has been noted that we need to disqualify Google ;-)
• “Throw money on the problem”
 – Research calls focusing on “stepping stones”
 – Mandate as part of procurement
• Workshops, forums, “melting pots” between communities
• Make available representative traces and workloads (chicken and egg problem?)
• Documents: create common vocabulary, architecture
• Solve incentive problems
Success of BDEC

- Documents and methodology plus key problems to drive community research
- Formation of a community
- Formulation of research programs
- Long-term: adoption of convergence technologies