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Merging of HPC and data analytics 

Future architectures will need to combine HPC and 
big data analytics into a single box

Apollo: Urika-GD
Graph Analytics

Helios: Urika-XA
BDAS

(Hadoop, Spark)

CADES Pods
Compute & Storage

OLCF’s Titan
Cray XK7

Metis
Cray XK7

BEAM’s “BE Analyzer” tool 
displaying interactive 2D and 
3D views of analyzed multi-
dimensional data generated at 
ORNL’s Center for Nanophase 
Materials Sciences (CNMS)
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Understanding structure-function evolution in 
complex solutions of polymers
Scientific Achievement: Developed and utilized an unique 
environmental chamber for in-situ multimodal interrogation 
with direct feedback to data analytics and advanced 
simulations that enabled  achieving a new level of control of 
polymer/small molecule assembly in solution and thin films.
Significance and Impact: A new capability for predictive 
understanding of structure, dynamics and function of soft 
materials on a continuous scale, from single molecule to 
mesoscale thin film assemblies. 
Collaborators: Jim Browning, Ilia N. Ivanov, J. Zhu, N. 
Herath, K. Hong, Valeria Lauter, Rajeev. Kumar, Bobby 
Sumpter, Hassina Bilheux, Jim Browning, Changwoo Do, 
Benjamin Doughty, Yingzhong Ma 

Citations: Scientific Reports 5: 13407 (2015), Nanoscale
DOI: 10.1039/C5NR02037A (2015)

Environment: gas and gas mixtures, oxygen 
generator (0-100%), vapor of arbitrary liquids, 
pressure (atm-10-6), humidity (0-90%), 
temperature (RT<T <300C), light (UV+laser)
Measurements: up to 8 modes simultaneously 
(PV, diode, transistor, etc.),  broad frequency 
impedance spectroscopy, transmittance, 
reflectance,  photoluminescence, Raman (1064 
nm), neutron scattering and reflectometry
Sorption /desorption kinetics: 5 MHz Quartz 
crystal microbalance (frequency, impedance)
In situ analysis: Artificial neural networks 
(pattern recognition), statistical (PCA, MCR, etc.)
Structural measurements of thin films– beam 
line 4a,b Neutron reflectometry (SNS); MD and 
SCFT theory via OLCF
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(nit) Picking words (and expectations)
• Converge – “tend to a common result”

– Merge, become one
• Alternates

– Integrate, Unify, Combine
– These tend to preserve characteristics of the components
– Integration at one level may appear as convergence at higher 

levels
• Perspective – expecting convergence is unrealistic

– We still have multiple procedural (object influenced) languages
– There are significant advantages to specialization

• Approach
– Define a converged stack, but support combinations of existing 

stacks
– Enable incremental migration to the converged environment
– Migration may never be complete
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Enabling Multi-OS/R Stack Application 
Composition

In-situ Simulation + Analytics composition in 
single Linux OS vs. Multiple Enclaves

• Problem
• HPC applications evolving to more compositional approach, overall application is a 

composition of coupled simulation, analysis, and tool components
• Each component may have different OS/R requirements, no “one-size-fits-all” OS/R stack

• Solution
• Partition node-level resources into “enclaves”, run different OS/R instance in each enclave

Pisces Co-kernel Architecture: http://www.prognosticlab.org/pisces/
• Provide tools for creating and managing enclaves, launching applications into enclaves

Leviathan Node Manager: http://www.prognosticlab.org/leviathan/
• Provide mechanisms for cross-enclave application composition and synchronization

XEMEM Shared Memory: http://www.prognosticlab.org/xemem/

• Recent results
• Demonstrated Multi-OS/R approach provides excellent

performance isolation; better than native performance possible
• Demonstrated drop in compatibility with both commodity and 

Cray Linux environments
• Impact

• Application components with differing OS/R requirements can 
be composed together efficiently within a compute node, 
minimizing off-node data movement

• Compatible with unmodified vendor provided OS/R environments, simplifies deployment
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Hobbes XASM:
Cross-Enclave Asynchronous 
Shared Memory

Linux

Producer Consumer

Kitten

physical 
memory  

pool

Cow 
Region

Pinned 
SnapshotXemem

• Mechanism for composition
– Producer exports a memory snapshot
– Consumer attaches to the snapshot
– Copy-on-Write used to allow both to 

continue asynchronously

• Works across enclave boundaries
– Linux to Linux
– Linux to Kitten
– Kitten to Kitten
– Native—Native, Native—VM, VM—VM

• Built on top of Hobbes infrastructure
ROSS’16: A Cross-Enclave Composition Mechanism for Exascale System Software
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Demonstration Model

Component A 
(C++/Trilinos)

Component B 
(C++/Trilinos)

Coordination 
Component 
Driver (DTK)

Initialization

Init handshake

XEMEM segment

Setup DTK

XEMEM segment Initialization

Init handshake

Execute

Transform mesh

Execute

Termination
handshake

Start Computation



Current status and 
future prospects of 
optical 
communications 
technology and 
possible impact on 
future BDEC 
systems

Current status and 
future prospects of 
optical 
communications 
technology and 
possible impact on 
future BDEC 
systems

• Data movement
– One of the keys in 

convergence of BDA and HPC 
systems

– Data in BDA are large and 
sometimes require real time 
processing (streaming)

• Optical communication 
technology to support data 
movement in future BDEC 
systems
– Current status and future 

prospects

Tomohiro Kudoh*, Kiyo 
Ishii**, Shu Namiki**
*The University of Tokyo
**National Institute of 
Advanced Industrial 
Science and Technology 
(AIST)
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• Interconnection network =  interconnections + switches
• Optical interconnections

– HPC and data centers: direct modulation → around 100Gbps/fiber.
– Wide area network: polarization/wavelength division multiplexing

→ tens of Tbps/fiber. 
– Heat and cost of DWDM light source: a wavelength bank (WB), a 

centralized generator of wavelengths, will solve the problem.
– Silicon photonics optical circuits can be used for whole light wave 

processing, including modulation, at a computing node. 
• Optical switches

– Power consumption is not proportional to the bitrate.
– Can switch more than 10Tbps DWDM signal in one bundle.
– Disadvantage : slow switching speed and limited number of ports.
– Expect only moderate progress in the future. 

Optical interconnection networkOptical interconnection network
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Optical InterconnectsOptical Interconnects

m
ux

Silicon 
photonics 
modulator 

array

demux

selector

Memory blocks

…

…

Wavelengths 
supply

Modulated selected 
wavelength

To network

Wavelength
BankComputing node

Processor cores

• Silicon photonics optical circuit at each node
9 De-multiplex, modulate, multiplex and transmit
9 Enables hybrid implementation with electronics

• Wavelength Bank (WB):
9 Single DWDM light source in a system: Distributed to computing nodes via 

optical amplifires
9 No light source is required at each computing node: low cost, low power

3



MEMS based PLC based Silicon
photonics WSS AWG-R

based

SOA based
fast
multicast
switch

Technology MEMS PLC Silicon 
waveguide

Mostly 
LCOS

PLC and 
tunable 
laser

SOA

Type Fiber switch Fiber switch Fiber 
switch

Wavelengt
h switch -- --

Port Count 192x192 32 x 32
16 x16 32x32 1x20 

1x40 720x720 8x8

Port
Bandwidth

Ultra wide
(tens of 
THz)

Fairly wide
(more than 
5 THz)

Fairly wide
(more than 
5 THz)

Fairly wide
(more than 
5 THz)

25 -
100GHz --

Physical
Size

Can be 
large

110 x 115 
mm (chip 
size)

11 x 25 
mm
(chip size)

-- -- --

Insertion
Loss About 3 dB 6.6 dB About 

20dB 3 - 6 dB -- --

Crosstalk very small < -40dB < -20dB < -40dB -- --

Switching
Time 10s of ms < 3ms ≒30 μs 10s of μs 100s of μS < 10ns

Cost Moderate to 
High

Moderate to 
High Can be low Depends 

on tech
Moderate 
to High

Moderate 
to High

Optical SwitchesOptical Switches
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Data Affinity to Function AffinityData Affinity to Function Affinity
• 10s of Tbps is equivalent to memory bandwidth
• Combine task specific processors in a pipelined 

manner, instead of using general purpose CPUs 
with large memory

5

General purpose CPU
Heterogeneous task specific 
processors

input
data

output
data

do computation
at where data exist

moving data to 
computation

CPU

Memory

Data Affinity
Scheduling

Function Affinity
Scheduling
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Iwashita lab.

(1) Massive parallelism
The growth in the performance of current computing systems 
relies on the parallelism.

• Increase in number of nodes  and cores, instruction sets for parallel 
processing (SIMD)

At least, O(103) threads and O(105) computational nodes 
should be effectively utilized.

(2) New memory and networking system
Moore’s law will end within 10 years.

• The flops on a single chip is no longer improved.
• The major architecture of the high-end computing system in the 

post Moore era is unclear (for me).
• Memory system and networking will be changed. Three dimensional 

stacking technology or the silicon photonics may contribute to the 
improvement of the data transfer rate. Moreover, non volatile 
memory system will be more used.

Complex and deep memory hierarchies and heterogeneity of 
memory latencies should be considered.

Terry Moore
プレゼンテーションのノート
(The balance between bytes and flops may change in future system.)

I would point out three issues.
One is degree of parallelism.
Currently, the performance increase of hpc systems is mainly due to the increased degree of parallelism.
This increased parallelism is provided by the increased number of cores and nodes, and the special instruction set for parallel 
Processing like SIMD.
I think this situation will continue. 
Therefore, in future numerical algorithms, we should consider the effective use of at least thousands of threads and a hundred 
Thousands of nodes.

The second issue is new memory and networking 
system.
It is predicted that Moore’s law will end within 10 years.
For me, the major architecture of the HPC system in post Moore era is unclear.
There is a perspective that the memory system and the data transfer system will be changed drastically.
For example, three dimensional stacking technology or the silicon photonics is expected to improve the data transfer rate. Moreover, non volatile memory system will be more used to save the energy.
We have to consider the effective use of the benefits provided by these new technologies.
But, actually, it may not be straightforward.
Accordingly, when developing new algorithms and implementations, we have to consider the complex and deep memory and network hierarchies and the heterogeneity of memory latencies.



Iwashita lab.

(3) Energy efficiency (performance per watt)
Flops/watt is more important than Flops in real applications.

• Even after Moore’s law ends, the performance per watt 
can be improved.

• For specific applications or computational kernels, we 
can effectively use special instructions (e.g., SIMD), 
accelerators, and reconfigurable hardware (e.g., FPGA) to 
increase the (effective) flops per watt. 

We should investigate implementation methods for these 
hardware systems and associated algorithms for the 
typical computational kernels required by real world 
applications. 



Iwashita lab.

(1) Iterative stencil computations
Temporal tiling for three dimensional FDTD method on Xeon 
Phi processors

[bandwidth reducing]
(2) Parallel in time technique for transient analyses

A parallel two-level multigrid in time solver for non-linear 
transient finite element analyses for electric motors

[more parallelism]
(3) Approximate matrix computations

Distributed parallel H-matrix library
An approximation technique for a dense matrix 

[reducing flops and bandwidth demands, relatively high 
B/F method]

(4) Sparse matrix solver
Linear solvers using SIMD instructions, accelerators, or new 
devices

[increase in the performance per watt]



Iwashita lab.

z ICB preconditioning: incomplete Cholesky factorization 
preconditioning with fill-in strategy based on nonzero blocks

z The preconditioning steps consist of small dense matrix 
computations which are efficiently processed by SIMD instructions.

z Numerical tests using UF matrix collection datasets showed the 
effectiveness of the proposed technique.

*

* * * * *
Coefficient matrix

ICB (2x2)
factorization

Lower triangular 
preconditioning 
matrix

Experiments on Intel Xeon Phi (KNC) coprocessor using 
240 threads

*
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Big Data, Simulations and HPC 
Convergence

Geoffrey Fox, Judy Qiu, Shantenu Jha, Saliya Ekanayake, 
Supun Kamburugamuve

June 16, 2016
gcf@indiana.edu

http://www.dsc.soic.indiana.edu/,    http://spidal.org/ http://hpc-abds.org/kaleidoscope/
Department of Intelligent Systems Engineering

School of Informatics and Computing, Digital Science Center
Indiana University Bloomington

BDEC: Big Data and Extreme-scale Computing
June 15-17 2016 Frankfurt

http://www.exascale.org/bdec/meeting/frankfurt



• Applications, Benchmarks and Libraries
– 51 NIST Big Data Use Cases, 7 Computational Giants of the NRC Massive Data 

Analysis, 13 Berkeley dwarfs, 7 NAS parallel benchmarks
– Unified discussion by separately discussing data & model for each application;
– 64 facets– Convergence Diamonds -- characterize applications

• Pleasingly parallel or Streaming used for data & model; 
• O(N2) Algorithm relevant to model for big data or big simulation
• “Lustre v. HDFS” just describes data
• “Volume” large or small separately for data and model

– Characterization identifies hardware and software features for each application 
across big data, simulation; “complete” set of benchmarks (NIST)

• Software Architecture and its implementation
– HPC-ABDS: Cloud-HPC interoperable software: performance of HPC (High 

Performance Computing) and the rich functionality of the Apache Big Data Stack. 
– Added HPC to Hadoop, Storm, Heron, Spark; will add to Beam and Flink
– Work in Apache model contributing code

• Run same HPC-ABDS across all platforms but “data management” nodes have 
different balance in I/O, Network and Compute from “model” nodes
– Optimize to data and model functions as specified by convergence diamonds
– Do not optimize for simulation and big data

Components in Big Data HPC Convergence



64 Features in 4 views for Unified Classification of Big Data 
and Simulation Applications
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HPC-ABDS
Kaleidoscope of (Apache) Big Data Stack (ABDS) and HPC Technologies  

Cross-
Cutting 

Functions 
1) Message 
and Data 
Protocols: 
Avro, Thrift, 
Protobuf 
2) Distributed 
Coordination
: Google 
Chubby, 
Zookeeper, 
Giraffe, 
JGroups 
3) Security & 
Privacy: 
InCommon, 
Eduroam 
OpenStack 
Keystone, 
LDAP, Sentry, 
Sqrrl, OpenID, 
SAML OAuth 
4) 
Monitoring: 
Ambari, 
Ganglia, 
Nagios, Inca 

	

17) Workflow-Orchestration: ODE, ActiveBPEL, Airavata, Pegasus, Kepler, Swift, Taverna, Triana, Trident, BioKepler, Galaxy, IPython, Dryad, 
Naiad, Oozie, Tez, Google FlumeJava, Crunch, Cascading, Scalding, e-Science Central, Azure Data Factory, Google Cloud Dataflow, NiFi (NSA), 
Jitterbit, Talend, Pentaho, Apatar, Docker Compose, KeystoneML 
16) Application and Analytics: Mahout , MLlib , MLbase, DataFu, R, pbdR, Bioconductor, ImageJ, OpenCV, Scalapack, PetSc, PLASMA MAGMA, 
Azure Machine Learning, Google Prediction API & Translation API, mlpy, scikit-learn, PyBrain, CompLearn, DAAL(Intel), Caffe, Torch, Theano, DL4j, 
H2O, IBM Watson, Oracle PGX, GraphLab, GraphX, IBM System G, GraphBuilder(Intel), TinkerPop, Parasol, Dream:Lab, Google Fusion Tables, 
CINET, NWB, Elasticsearch, Kibana, Logstash, Graylog, Splunk, Tableau, D3.js, three.js, Potree, DC.js, TensorFlow, CNTK 
15B) Application Hosting Frameworks: Google App Engine, AppScale, Red Hat OpenShift, Heroku, Aerobatic, AWS Elastic Beanstalk, Azure, Cloud 
Foundry, Pivotal, IBM BlueMix, Ninefold, Jelastic, Stackato, appfog, CloudBees, Engine Yard, CloudControl, dotCloud, Dokku, OSGi, HUBzero, OODT, 
Agave, Atmosphere 
15A) High level Programming: Kite, Hive, HCatalog, Tajo, Shark, Phoenix, Impala, MRQL, SAP HANA, HadoopDB, PolyBase, Pivotal HD/Hawq, 
Presto, Google Dremel, Google BigQuery, Amazon Redshift, Drill, Kyoto Cabinet, Pig, Sawzall, Google Cloud DataFlow, Summingbird  
14B) Streams: Storm, S4, Samza, Granules, Neptune, Google MillWheel, Amazon Kinesis, LinkedIn, Twitter Heron, Databus, Facebook 
Puma/Ptail/Scribe/ODS, Azure Stream Analytics, Floe, Spark Streaming, Flink Streaming, DataTurbine 
14A) Basic Programming model and runtime, SPMD, MapReduce: Hadoop, Spark, Twister, MR-MPI, Stratosphere (Apache Flink), Reef, Disco, 
Hama, Giraph, Pregel, Pegasus, Ligra, GraphChi, Galois, Medusa-GPU, MapGraph, Totem 
13) Inter process communication Collectives, point-to-point, publish-subscribe: MPI, HPX-5, Argo BEAST HPX-5 BEAST PULSAR, Harp, Netty, 
ZeroMQ, ActiveMQ, RabbitMQ, NaradaBrokering, QPid, Kafka, Kestrel, JMS, AMQP, Stomp, MQTT, Marionette Collective,  Public Cloud: Amazon 
SNS, Lambda, Google Pub Sub, Azure Queues, Event Hubs  
12) In-memory databases/caches: Gora (general object from NoSQL), Memcached, Redis, LMDB (key value), Hazelcast, Ehcache, Infinispan, VoltDB, 
H-Store 
12) Object-relational mapping: Hibernate, OpenJPA, EclipseLink, DataNucleus, ODBC/JDBC  
12) Extraction Tools: UIMA, Tika 
11C) SQL(NewSQL): Oracle, DB2, SQL Server, SQLite, MySQL, PostgreSQL, CUBRID, Galera Cluster, SciDB, Rasdaman, Apache Derby, Pivotal 
Greenplum, Google Cloud SQL, Azure SQL, Amazon RDS, Google F1, IBM dashDB, N1QL, BlinkDB, Spark SQL 
11B) NoSQL: Lucene, Solr, Solandra, Voldemort, Riak, ZHT, Berkeley DB, Kyoto/Tokyo Cabinet, Tycoon, Tyrant, MongoDB, Espresso, CouchDB, 
Couchbase, IBM Cloudant, Pivotal Gemfire, HBase, Google Bigtable, LevelDB, Megastore and Spanner, Accumulo, Cassandra, RYA, Sqrrl, Neo4J, 
graphdb, Yarcdata, AllegroGraph, Blazegraph, Facebook Tao, Titan:db, Jena, Sesame 
Public Cloud: Azure Table, Amazon Dynamo, Google DataStore 
11A) File management: iRODS, NetCDF, CDF, HDF, OPeNDAP, FITS, RCFile, ORC, Parquet 
10) Data Transport: BitTorrent, HTTP, FTP, SSH, Globus Online (GridFTP), Flume, Sqoop, Pivotal GPLOAD/GPFDIST 
9) Cluster Resource Management: Mesos, Yarn, Helix, Llama, Google Omega, Facebook Corona, Celery, HTCondor, SGE, OpenPBS, Moab, Slurm, 
Torque, Globus Tools, Pilot Jobs 
8) File systems: HDFS, Swift, Haystack, f4, Cinder, Ceph, FUSE, Gluster, Lustre, GPFS, GFFS 
Public Cloud: Amazon S3, Azure Blob, Google Cloud Storage 
7) Interoperability: Libvirt, Libcloud, JClouds, TOSCA, OCCI, CDMI, Whirr, Saga, Genesis 
6) DevOps: Docker (Machine, Swarm), Puppet, Chef, Ansible, SaltStack, Boto, Cobbler, Xcat, Razor, CloudMesh, Juju, Foreman, OpenStack Heat, 
Sahara, Rocks, Cisco Intelligent Automation for Cloud, Ubuntu MaaS, Facebook Tupperware, AWS OpsWorks, OpenStack Ironic, Google Kubernetes, 
Buildstep, Gitreceive, OpenTOSCA, Winery, CloudML, Blueprints, Terraform, DevOpSlang, Any2Api 
5) IaaS Management from HPC to hypervisors: Xen, KVM, QEMU, Hyper-V, VirtualBox, OpenVZ, LXC, Linux-Vserver, OpenStack, OpenNebula, 
Eucalyptus, Nimbus, CloudStack, CoreOS, rkt, VMware ESXi, vSphere and vCloud, Amazon, Azure, Google and other public Clouds  
Networking: Google Cloud DNS, Amazon Route 53     

 

	

	

21	layers	 
Over	350	
Software	
Packages	
	
January	
29	
2016 



HPC-ABDS Activities of NSF14-43054
• Level 17: Orchestration: Apache Beam (Google Cloud Dataflow)
• Level 16: Applications: Datamining for molecular dynamics, Image 

processing for remote sensing and pathology, graphs, streaming, 
bioinformatics, social media, financial informatics, text mining

• Level 16: Algorithms: Generic and application specific; SPIDAL Library
• Level 14: Programming: Storm, Heron (Twitter replaces Storm), Hadoop, 

Spark, Flink. Improve Inter- and Intra-node performance; science data 
structures

• Level 13: Runtime Communication: Enhanced Storm and Hadoop (Spark, 
Flink, Giraph) using HPC runtime technologies, Harp

• Level 11: Data management: Hbase and MongoDB integrated via use of 
Beam and other Apache tools; enhance Hbase

• Level 9: Cluster Management: Integrate Pilot Jobs with Yarn, Mesos, 
Spark, Hadoop; integrate Storm and Heron with Slurm

• Level 6: DevOps: Python Cloudmesh virtual Cluster Interoperability



Convergence Language: Recreating Java Grande
128 24 core Haswell nodes on SPIDAL Data Analytics
Best Java factor of 10 faster than “out of the box”; comparable to C++

Best Threads intra 
node; MPI inter node

Best MPI; inter 
and intra node

MPI; inter/intra 
node; Java not 
optimized

Speedup compared to 1 
process per node on 48 nodes



Big Data Analytics and High Performance 

Computing Convergence Through 

Workflows and Virtualization

Ewa	Deelman,	Ph.D.

Science	Automation	Technologies	Group
USC	Information	Sciences	Institute

BDEC	Workshop,	Frankfurt,	June	15-17	2016

http://deelman.isi.edu



BDA and HPC convergence

§ Users don’t want to worry about where to run
– need results in a timely manner

– need ease of use and automation

§ Some applications naturally cross the system boundaries:
– simulation and data mining (ex-situ or in-situ)

§ Workflows naturally combine heterogeneous applications
– tightly coupled codes

– machine learning loosely coupled applications

– independent high-throughput tasks

– a mix of all

§ Workflow Management Systems
+ can cross boundaries

+ can select the appropriate resources, schedule the needed data 
movement, send tasks for execution on the target resources

– keep the different infrastructures separate and makes it hard to co-locate 
extreme computation and analytics. 



CyberShake PSHA 

Workflow

239 Workflows

§ Each site in the input map 

corresponds to one workflow

§ Each workflow has:

² 820,000 tasks

v Description

² Builders ask seismologists: �What will the peak 
ground motion be at my new building in the next 
50 years?�

² Seismologists answer this question using 
Probabilistic Seismic Hazard Analysis (PSHA)

Southern California Earthquake Center 

Mix of HPC and HTC codes



Solutions

Partition the workflow into subworkflows and 

send them for execution to the target system, 

managed by an MPI-based workflow engine

Similar solution for a 

mix of HPC and BDA,  

embed a BDA 

workflow within 

overall workflow and 

use specific WE

Still BDA on BDA 

platforms

MPI

BDA 
Workflow 
Engine

HPC Workflow
Engine



Where do we go from here? 

§ Need a more natural way of managing BDA tasks within HPC

§ Could develop a workflow engine to manage BDA apps on 
HPC

§ Potentially combine resource provisioning and task 
scheduling

– Scheduler provides a portion of the machine to the WMS

– WMS manages the software deployment, configuration, and task 
scheduling/BDA engine launch

§ Problems:

– Security concerns of HPC admins

– Complexity of setting up the correct software environment

– Complexity of the HPC system, in particular the deep memory 
hierarchy and its impact on the overall system performance and 
energy consumption

– Potential performance degradation and suboptimal use of 
resources



Possible Solutions

§ Work closely with resource providers to understand concerns, 
develop “trusted” resource/work management systems, develop 
specialized monitoring tools, and auditing mechanisms

§ Develop tools that automate the software environment set up, explore 
virtualization, need to manage the container deployment and 
environment testing automatically

§ Develop data management capabilities that can seamlessly manage 
different types and amounts of data across workflow components
– Need an adequate level of abstraction and need to be easy to incorporate in 

legacy applications

– Develop data-aware work scheduling

§ Realize that there may need to be some performance degradation in 
order to support scientific productivity and system manageability

§ Help characterize resource usage and provide incentives for good 
resource usage

§ Systems need to be made reproducibility aware:
– Insight into how reproducible the computation is

– Transparency: how the computation was performed, how the environment and 
the applications were set up so that the results can be inspected

– Support reuse and sharing

Most Importantly: work closely with users!



Extreme	Scale	Scientific	Data	Sets
On	demand	Infrastructure	and	Compression
(merge	of	2	white	papers)

Franck Cappello1,2, Katrin Heitmann1, Gabrielle Allen2, Sheng Di1, 
William Gropp2, Salman Habib1, Ed Seidel2, Brandon George4, Brett 
Bode2, Tim Boerner2, Maxine D. Brown3, Michelle Butler2, Randal L 

Butler2, Kenton G. McHenry2, Athol J Kemball2, Rajkumar Kettimuthu1, 
Ravi Madduri1, Alex Parga2, Roberto R. Sisneros2, Corby B. Schmitz1, 

Sean R Stevens2, Matthew J Turk2, Tom Uram1, David Wheeler2, Michael 
J. Wilde1, Justin M. Wozniak1.

1Argonne National Laboratory, 2NCSA, 3UIC, 4DDN
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Sciences	produce	gigantic	datasets	that	
are	hard	to	transfer,	store	&	analyze
� Today’s scientific research is using simulation or 

instruments and produces extremely 
large of data sets to process/analyze

� Examples:
� Cosmology Simulation (HACC):

� A total of >20PB of data when 
simulating trillion of particles 

� Petascale systems FS ~20PB
à data reduction is needed
à currently drop 9 snapshots over 10

� APS-U (next-generation APS project at Argonne): 
� Brain Initiatives: in the order of 100PB of storage: 

hundreds of specimens, each requiring 150TB of storage.
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Cost	of	producing,	moving	and	storing	
science	data	pushes	toward	sharing
� From 1 producer, 1 user to 1 producer, many users

� Examples:
� LHC
� The Cancer Imaging Archive
� Cosmological surveys (e.g. Dark energy survey)
� Nucleotide sequence, genome sequence, protein, etc. databases
� Climate simulations (International Panel on Climate Change)
� Cosmology simulations
� Open Access Directory 
� Etc.
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Systems	and	sites	tend	to	specialize
� Scientific instruments are specialized

� Some systems are better for simulation 
than data analytics (BlueWaters is a 
wonderful platform for data analytics). 
The opposite is also true.

� HPC Centers may not have both (ANL 
does not have a system like BlueWaters
for data analytics)

� Data centers & Clouds designed for storage and access 
(not the priority of scientific instruments and HPC centers)

� The end of Moore’s law may accelerate this specialization



ANL-NCSA	SC16	experiment:
On	demand	infrastructure	for	data	
analytic	and	storage

� Objectives: 
1) Cosmology simulation and analysis at full resolution
2) Share the data with other sites
à Need to produce and analyze all snapshots
à Need to create a virtual infrastructure of complementary

resources 



On	demand	infrastructure:	Challenges
1) Simulation: Produce all snapshots 

� could not be done before
� Snapshots transferred as soon as produced to BW (Orchestration)

2) Transmit data between remote sites at the rate of 1PB/day 
(~93Gbps sustained)

� Was done before with dedicated 
resources (requires Coordinated 
multi-node data movement: GridFTP) 

� In our case: network path can be
reserved but storage is shared by
both compute nodes and data transfer nodes – e.g, NCSA, Argonne)

3) Storage: Build a self contained (Embedded), 
scalable Data Transfer Node (DTN)

� DDN will provide all the needed hardware
4) Visualization from all snapshots at full resolution

� Could not be done before
� Enable the analysis of all detailed history of all structures in the 

simulation



On	demand	infrastructure:	Challenges
� 1) Simulation: Produce all snapshots 

� could not be done before
� Will allow for more accurate analysis

� 2) Transmit data between remote sites at the rate of 
1PB/day (~93Gbps sustained)
� Was done before with dedicated 

resources (requires Coordinated 
multi-node data movement: GridFTP) 

� In our case: network path can be
reserved but storage is shared by
both compute nodes and data transfer nodes – e.g, NCSA, Argonne)

� 3) Storage: Build a self contained (Embedded), 
scalable Data Transfer Node (DTN)

� DDN will provide all the needed hardware
� 4) Visualization from all snapshots at full resolution

� Could not be done before
� Enable the analysis of all detailed history of all structures in the 

simulation



Lossy compression	as	a	fundamental	
pattern	(motif)	of	scientific	computing

� Lossy compression: used in every domain where data 
cannot be communicated and stored entirely: Photos, videos, 
audio files, Medical imaging, etc.

� Compression is one aspect of data reduction (complementary)
� Compression is a fundamental motif of scientific computing

� Simulations and experiments produce approximations
� Lossy compression is another layer of approximation
� It changes the initial data 
� It can be done in parallel
� It has overhead (computational, communication, memory) 

� Lossy compression for scientific data is still in its infancy
� Only 12 papers on that topic in 26 years of IEEE DCC conference 
� Hard to compress data sets (compression factor of 3-5)
� Few lossy compressors have parallel implementations



Lossy compression:	Challenges
1) improve compression factor for hard to compress 
datasets (we do not understand them)

� Example: APS dataset

1) What can we do/don’t with it?
� Compress data before analytics?
� before long term storage?
� for checkpoint/restart?
� Compress communications?

2) How do we use it?
� Can we perform data analytics directly on the

compressed version of the dataset?
� Do we need to decompress? If yes, can we pipeline?
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Big Data for
climate and air quality
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Big Data in Earth Sciences

• There are problems involving large, complex datasets: climate 
prediction, operational weather and air quality forecast.

• There are large problems involving data: simulation of 
anthropogenic climate change.

• And there are Big Data problems: dealing with heterogeneous 
data sources to produce end-user information with a 
weather, climate and air quality component.
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• Automatisation: Preparing and running, post-processing and output 
transfer, all managed by Autosubmit. No user intervention needed.

• Provenance: Assigns unique identifiers to each experiment and 
stores metadata about model version, configuration options, etc

• Failure tolerance: Automatic retrials and ability to repeat tasks in 
case of corrupted or missing data.

• Versatility: Currently run EC-Earth, NEMO and NMMB/BSC models 
on several platforms.

.

Workflows: Autosubmit

• C3S Climate Projections Workshop: Near-term predictions and projections, 21 April 2015
D. Manubens, J. Vegas (IC3)

Workflow of an experiment 
monitored with Autosubmit 

(yellow = completed, green = 
running, red = failed, … )
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S2dverification is an R package to verify seasonal to decadal forecasts 
by comparing experimental data with observational data. It allows 
analysing data available either locally or remotely. It can also be used 
online as the model runs.

Data analysis

• C3S Climate Projections Workshop: Near-term predictions and projections, 21 April 2015

LOCAL STORAGE

ESGF NODE
or

OPeNDAP SERVER

s2dverification package

BASIC STATISTICS

SCORES
Correlation, ACC, RMSSS, CRPS, ...

PLOTS

Anomaly Correlation Coefficient. 10M Wind Speed ECMWF S4 
1 month lead with start dates once a year on first of 
November and Era-Interim in DJF from 1981 to 2011. Simple 
bias correction with cross-validation.

PLOTS

● Supports datasets stored 
locally or in ESGF 
(OPeNDAP) servers.

●  Exploits multi-core 
capabilities

● Collects observational and 
experimental datasets 
stored in multiple 
conventions:
● NetCDF3, NetCDF4
● File per member, file per 

starting date, single file, …
● Supports specific folder 

and file naming 
conventions.

N. Manubens (IC3)
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Current workflow for diagnostics

EC-Earth 
2,000 cores per 

member
X members

XIOS
I/O Server Outputs

move to archive
(140 Gb/year)

Diagnostics
Sequential

Data reductionretrieve from 
archive

move to archive
(14 Gb/simulated year)

XIOS

➔ XIOS is an open source C++ I/O server 
widely used by the climate community

➔ XIOS is already integrated in NEMO and 
will be integrated in OpenIFS

➔ The diagnostics should be computed at 
the XIOS level

➔ Unfortunately, XIOS does not compute 
diagnostics yet

User analysis

fat nodes

Drawbacks

➔Diagnostics only computed offline (after 
model runs)
➔High level of data traffic
➔Fat nodes are required
➔Delays on making significant data to the 
user
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EC-Earth 
2,000 cores per 

member
X members

Proposed workflow for diagnostics

XIOS
I/O Server Outputs

move to 
archive

XIOS could be modified to add a layer of Analytics as a Service 
(based in PyCOMPSs/COMPSs) 
➔ Diagnostics online (during model run)
➔ Reduced data traffic
➔ Diagnostics possible on the computing nodes
➔ New diagnostics (data mining of extremes) possible
➔ The user gets the results faster

User analysis

Diagnostics 
computed as 

AaaS
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Multi-scale simulation
Simulation of large and complex systems 
is still a challenge and one the applications 
that will require exascale computing
Multi-scale simulators compose simulators 
at different levels of granularity (detail), 
from coarser to finer grains, switching 
between them whenever necessary in 
order to attain the required accuracy
At BSC, we propose the use of 
PyCOMPSs/COMPSs to orchestrate multi-
scale simulations at HBP

* Lippert et al, “Supercomputing Infrastructure for Simulations of the Human Brain”, 
chart courtesy of Felix Schürmann
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PyCOMPSs/COMPSs
Programmatic workflows

– Standard sequential coordination scripts and applications in Python or Java
– Incremental changes: Task annotations + directionality hints

Runtime 
– DAG generation based on data dependences: files and 

objects
– Tasks and objects offload

Platform agnostic
– Clusters
– Clouds, 

distributed 
computing 
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Implementing multi-scale simulations with PyCOMPSs/COMPSs 
Each node of the task-graph becomes an instance of one of the required 
simulators
PyCOMPSs enables the coupling of different simulators, each of them 
possibly parallelized with MPI or MPI+X

– Possibly offloading computation to accelerators 
PyCOMPSs runtime will orchestrate the execution of the multiscale simulation

– Deciding when each simulator should be invoked
– Enabling the exchange of data between different simulators

Each simulator will advance a number of time-steps during each invocation 
and then stop until it is invoked again
Features required:

– Support for hierarchy in the workflows 
– Support for parallel tasks: a task can be PyCOMPSs, MPI, OpenMP, …
– Support for persistency data in the tasks 
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@task
def doctor (conductivity):

# Evaluate simulation
return status, medicine

@service
def brainSimulator (conductivity, temperature):

# perform a brain simulation
return brainActivity

@service
def synapsisSimulator (brainActivity):

# perform a synapse simulation
return conductivity

declare service brain
declare service synapsis
Loop:

temp = load (temperature) # Possible persistent storage access.
brainActivity = brainSimulatior (conductivity, temp) 
conductivity = synapsisSimulator (brainActivity, medicine)
status, medicine = doctor (conductivity)
if status ==‘healthy’:

return medicine

Implementing multi-scale simulations with PyCOMPSs/COMPSs 
Regular task

Stateful tasks: able to keep the 
state/initialized data between 
invocations 
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New storage and memory
Stateful tasks require new storage solutions

– dataClay, Hecuba
Requirements on memory of multi-scale simulations 
and others à 100 PB, sustained 100 PB/S 
Not achievable with regular RAM

– Use of NVM memories, hybrid or global
Hybrid memory hierarchies of scratchpad 
and cache storage

– Partially or totally managed by the runtime system
– Reduced power consumption 

Runtime system is in charge of mapping data 
specified by the programmer to the scratchpad devices

– Use of task-based annotations 
– Rest of memory accesses served by the L1 cache. 

That same approach can be taken to the next level 
– Simulation workloads in machines with hybrid memory subsystems combining DRAM and NVM.

C CL1
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Toward large	scale	distributed experiments for	
climate change data	analytics in	the	Earth	System	

Grid Federation (ESGF)	eco-system

S. Fiore1, D. Williams2, V. Anantharaj3, S. Joussaume4, D. Salomoni5, S. Requena6, G. Aloisio1,7

1 Euro-Mediterranean Center on Climate Change Foundation, Italy and ENES
2 Lawrence Livermore National Laboratory, Livermore, California, USA

3 Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
4 CNRS, France and ENES

5 INFN Division CNAF (Bologna), Italy
6 GENCI, France

7 University of Salento, Italy

4th BDEC closed meeting - Frankfurt June 16-17, 2016



CMIP data history: a global community effort



ESGF and the CMIP5 data archive

DOE/ANL

DOE/PNNL

DOE/LLNL

DOE/ORN
L

NASA/JPL
NASA/NCCS

MPI/DKRZ

BADC

CMCC

IPSL

NOAA/ESRL

ANU/NCI

IPCC/CMIP
ACME

Japan Ireland

NorwayChina

Canada

NSF/NCAR NOAA/GFDL

C-LAMP
ARM
ACME

ACME

DOE/NERSC Russia

ACME

IPCC/CMIP5
CORDEX

IPCC/CMIP5
CORDEX

IPCC/CMIP5
PMIIP3

IPCC/CMIP5

obs4MIPs
MERRA
GMAO

DCMIP

IPCC/CMIP5



Key issues and challenges regarding climate data 
analysis

• ESGF	provides	a	large-scale,	federated,	data-sharing	infrastructure
– client-side	and	sequential	nature	of	the	current	approach
– The	setup	of	a	data	analysis	experiment	requires	that	all	the	needed	climate	datasets	must	be	

downloaded	 from	the	related	ESGF	data	nodes	on	the	end-user’s	local	machine.	
– for	multi-model	experiments	data	download	can	take	a	significant	amount	of	time	(weeks!)	

• The	complexity	of	the	data	analysis	process	itself	leads	to	the	need	for	end-to-
end	workflow	support	solution
– analysing	large	datasets	involves	running	tens/hundreds	 of	analytics	operators	in	a	coordinated	

fashion.	
– Current	approaches	(mostly	based	on	bash-like	scripts)	requires	climate	scientists	to	take	care	of,	

implement	and	replicate	workflow-like	control	logic	aspects	in	their	scripts	(which	are	error-
prone	too)	along	with	the	expected	application-level	part.	

• The	large	volumes	of	data	pose	additional	challenges	related	to	performance,	
which	requires	substantial	co-design	efforts	(e.g.	at	the	storage	level)	to	address	
current	issues.	



A paradigm shift for data analysis to face the exabyte era 

• A	different approach based on	(i)	data-intensive	facilities running high-performance	analytics
frameworks jointly with	(ii)	server-side	analysis capabilities,	should to	be	explored.	

• Data	intensive	facilities close to	the	different storagehierarchies will be	needed to	address high-
performance	scientific data	management.	
– parallel applications and	frameworks for	big	data	analysis should provide a	new	generation	of	“tools”	for	

climate scientists.

• Server-side	approaches will intrinsically and	drastically reduce	data	movement; moreover…	
– download	will only relate	to	the	final results of	an	analysis
– the	geographic datasets distribution will require specific tools or	frameworks to	orchestrate	multi-site	

experiments
– they will foster re-usability (of	data,	final/intermediate	products,	workflows,	 sessions,	 etc.)	as well as

collaborative	experiments
– Need for	interoperability efforts towardhighly interoperable tools/environments for	climate data	analysis

• Research Data	Alliance (RDA)	and	ESGF	are	already working on	these topics.

• In	such a	landscape,	joining HPC	and	big	data	and	cloud technologies could help	on	deploying in	
a	flexible and	dynamic manner analytics applications/tools s enabling highly scalable and	elastic
scenarios in	both private	clouds and	cluster	environments.	



Related initiatives and projects

• Some	relevant	related	initiatives	and	projects	strongly	linked	to	the	case	study	presented	in	this	
work,	and	that	are	expected	to	provide	valuable	feedback,	are:	

– the	Center of	Excellence	 on	Weather	and	Climate	Simulations	in	Europe	(ESiWACE)	that	aims	at	addressing,	among	the	
others,	optimizations	at	the	storage	level	and	end-to-end	workflow	support	through	a	co-design	based	approach

– the	European	Extreme	Data	&	Computing	Initiative	(EXDCI)	whose objective	is	to	coordinate	the	development	 and	
implementation	 of	a	common	strategy	for	the	European	HPC	Ecosystem	joining	the	expertise	of	the	two	most	
significant	HPC	bodies	in	Europe,	PRACE	and	ETP4HPC

– Ophidia,	a	CMCC	research	effort	on	high	performance	data	analytics	for	eScience,	 addressing	large	scale	climate	
change	data	analysis
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A real case study on multi-model climate data analysis

INDIGO-DataCloud	RIA-653549

• In	the	context of	the	EU	H2020	INDIGO-DataCloud project,	a	use	case	on	climatemodels
intercomparison data	analysis is being implemented

• The	use	case	relates to	three classes of	experiments for	multi-model	climate data	analysis which
require the	access to	one or	more	ESGF	data	repositories as well as running complex analytics
workflows with	multiple	operators

• A	geographically distributed testbed involving three ESGF	sites (LLNL,	ORNL	and	CMCC)	
represents the	test	environment for	the	proposed solution that is being applied on	CMIP5	
datasets.	

ESGF Nodes
INDIGO FGEngine + Kepler



Architectural view of the experiment
• Distributed	experiment

for	climate data	analysis
• Two-level workflow

strategy to	orchestrate	
large	scale	experiments
– Ophidia
– Kepler

• Interoperability with	
ESGF	is mandatory (UV-
CDAT	Integration)

• Access	through different
clients

• Interactive	and	batch	
scenarios

• Dynamic instantiation of	
an	Ophidia	cluster	and	
Kepler	WfMS

• Automated deployment
through IM/TOSCA	
interfaces



Thanks
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SAGE aims to lay the foundation for future Extreme 
Scale/BDEC Storage Platforms 

SAGE will validate a BDEC 
storage platform by 2018

Project Co-ordinated by Seagate

www.sagestorage.eu
ISC Booth #1340



SAGE 
Building A Storage  System for BDEC

Very Tightly Coupled Data & 
Computation 

�PERCIPIENCE�The Old Paradigm 
of Storage & 
Computing 

The SAGE Paradigm



SAGE: Areas of Research

Architecture Highlights
• In-Storage Compute
• Many Storage Tiers



Growing HPDA/Big Science Requirement:  
Simulation & Big Data Analysis as part of the same 

workflow 

Co-Design with Use cases:
– Visualization
– Satellite Data Processing
– Bio-Informatics
– Space Weather
– Nuclear Fusion (ITER) 
– Synchrotron Experiments

Validation at Juelich Supercomputing 
Center

SAGE: Co-Design/Validation with BDEC Use cases



Status 
ü Co -Design  Activity
ü Hardware Platform Definition
ü Design of core software components
ü Successful First EC Review

SAGE: Architecture & Status
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ANSHU DUBEY, SALMAN HABIB

DATA INTENSIVE AND HIGH 
PERFORMANCE COMPUTING; 
AN HEP VIEW

qScience in many communities 
needs HPC and large scale data 
flow and volume

qNeed both performance and 
usability

qExamples
qHigh energy physics
qLight sources
qBiology
qClimate/Earth modeling
qMaterials



HEP COMPUTATIONAL REQUIREMENTS

qHEP focus on three frontiers
qThe energy frontier

qLarge experiments at colliders
q30PB/yr now, expected to reach 400PB/yr in a decade

qThe intensity frontier
qSmall to medium scale experiments
q< 1PB/yr now, expected to grow to 10PB/yr in 5 yrs

qThe cosmic frontier
q< 1PB/yr now, expected to become 10PB/yr in 10 yrs

qExperiments need support from theory => 
simulations with variable scale data

6/17/16 2



HEP COMPUTATIONAL CHALLENGES

qComplex data pipelines and “event” style analysis
qNeed to run many times

qAmount of I/O varies
q In simulations data generation limited by I/O resources
q In Energy Frontier experiments, triggers used to limit data B/W

qHigh throughput computing uses Grid resources in 
batch mode
q Fast approaching a potential breaking point

qEdge services to handle security, resource flexibility, 
interaction with schedulers, external security, resource 
flexibility, interaction with schedulers, external 
databases and requirements of the user community

6/17/16 3



HEP WISH-LIST

q Software Stack
q Ability to run arbitrarily complex software stack on demand

q Resilience 
q Ability to handle failures of job streams

q Resource flexibility 
q Ability to run complex workflows with changing computational ‘width’

q Wide-area data awareness 
q Ability to seamlessly move computing to the data (and vice versa where 

possible); access to remote databases and data consistency
q Automated workloads 

q Ability to run automated production workflows
q End-to-end simulation-based analyses 

q Ability to run analysis workflows on simulations using a combination of in 
situ and offline/co-scheduling approaches

6/17/16 4
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Some observations and examples inspired by CEA 
experience in… 

Co-design of HPC systems with technology suppliers (first-of-a-kind TERA10/100/1000)

Commissioning and operation of large computing infrastructures (currently 3 petascale systems – European 
Tier-0 CURIE 1.8 PF + CCRT cobalt 1.5 PF + TERA 2.7 PF)

Development and usage of simulation applications in many different areas and with many
different partners (research, industry) as well as for defense programmes
….

… with strong involvement in national and European HPC structures, programmes and initiatives

Plan d’Investissements d’Avenir / Nouvelle France Industrielle
Maison de la Simulation

Horizon 2020 (ETP4HPC and HPC PPP; FETHPC projects; Centres of Excellence; PRACE)

IPCEI



HPC @ CEA



WHAT (IS CONVERGENCE)?

De facto observation from the computing centre standpoint

ü More and more entangled compute/data-intensive activities

ü Sample applications: examples or forerunners of convergence

Data flows becoming more complex / diverse / multi-directional
Actually more and more of a continuum HPC/HTC/data processing

ü Numerical simulations are data producers – but also consumers – data types becoming more 
diverse even in ‘conventional’ numerical applications

ü Observational and experimental sciences are rather data consumers
Data processing more and more compute-hungry… in addition to storage and network-hungry

ü Crossroads: e.g. climate (CMIP6); coupling of genomics with 3D imaging; comparative modelling

ü Computing centres operations also generate massive data (BigData analysis)

Genetic imaging – Neurospin - V. Frouin et al.
http://www.teratec.eu/library/pdf/forum/2012/presentations/
A5_02_FTeratec_2012_VFrouin.pdf

Comparing numerical 
simulation and 3D modelling of 
pre-clinical brain models
Maison de la Simulation

XIOS
Y. Meurdesoif et al.
Re-engineering the whole
climate I/O and data flow
http://forge.ipsl.jussieu.fr/ioserver

Statistics cluster
CEA/DIF/DSSI



WHAT (IS CONVERGENCE)?

Some more examples….

“Legacy” data: new science arising from data processing 
re-engineering / ‘big-data-style’ enhancement

Supercomputer/datacentres and applications are 
themselves becoming objects of studies - producing huge 
amounts of introspection data! System & job logs, facility 
& energy monitoring… 

ü we now have dedicated ‘statistic clusters’ using 
hadoop and alike solutions + data analytics

ü tricky visualisation of large data sets such as parallel 
traces 

Datascale - revisiting seismic/volcano
data with ‘big data’ optimisations
CEA/DIF/DSSI, CEA/DIF/DASE
http://www-hpc.cea.fr/en/news2015.htm

Large tiled display / parallel traces
Maison de la Simulation
(CEA/CNRS/INRIA et al.)



WHY (CONVERGENCE)? PATHWAYS?

Commonalities that can be useful and beneficial, 

technology- infrastructure- and application-wide

Technology (solutions = h/w + s/w)

ü HPC needs more data locality, I/O and storage

efficiency

ü Current massive simulation data management may 

face limitations (post-posix FS needed?)

ü Data processing/analytics may need parallelism

(hardware, productive programming)

Infrastructures and services: optimise resource usage

ü Compute and storage equipment

ü (Wo)manpower and skills – developers and admins

Applications

ü OK: big data useful for HPC & HPC useful  for big 

data

Software easier to collaborate on than hardware

Different possible paths / levels

ü Virtualisation

ü ‘Standard’ APIs or ‘open interfaces’ , middleware

ü Potential game changers like NVRAM, 3D stacking

(different compute/memory paradigms?)

ü Grasp opportunities…

Should we distinguish Datacentre/HPC centre? Irrelevant 

question!

ü Difference is in resources and services offered, access  

and delivery modes,usage profiles  (e.g. capability, 

HTC, data distribution&processing)

New scientific paradigms and know-how convergence / 

cross-fertilisation

ü Data science + computer science

Technical convergence will happen – technology push, market pull, resource management pressure… of course not w/o efforts!

There is also a discrepancy/gap at the level of resource provisioning and usage/access models !
Equipment funding and commissioning - Capability allocations vs. elastic access to distributed data/processing…


