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This white paper covers one element of the plausible pathways to convergence: 
1) Common tools and technologies: 

a. Common libraries: numerical; runtime systems; i/o; data analytics; 
 
Scalable data compression is one of the operations that is needed both in scientific simulation and in 
scientific experiments. But scalable compression is more than a technique; it is one of the fundamental 
patterns supporting the convergence of HPC and big data.  
 
In every domain where the infrastructure cannot communicate and/or store the generated raw data directly, 
data compression is a critical data transformation that contributes to satisfying the end-user needs. For 
example, data compression is already widely used for image and signal compression in many consumer 
products. Compression is also needed in large-scale data centers 
(Yahoo compresses emails), and lossy compression is an active 
research topic for medical imaging and genomic applications.  
 
Compression is becoming more and more relevant for scientific data 
produced by simulations and experiments. For example, the HACC 
cosmology code generates 40 PB of data when running a 1 billion 
particle simulation. In another domain, the RAVEN project 
proposes to use the Argonne Advanced Photon Source for x-ray 
tomography of integrated circuits (ICs) that will produce 32 TB of 
data for each IC. Storing or communicating these raw datasets 
without significant data reduction is impossible. In the above 
examples, users need to reduce the data by a factor 10 to 100 to 
obtain reasonable communication and storage times. The approach 
of data omission (i.e., storing only 1 data point of 10 produced, 1 
snapshot for 10 produced), often used for simulations, is not 
satisfactory because it impairs the accuracy of the analytics 
performed from the simulation. 
 
Although compression is critical to evolve many scientific domains to the next step, the technology of 
scientific data compression and the understanding on how to use it are still in their infancy. The first 
evidence is the lack f results in this domain: over the 26 years of the prestigious IEEE Data Compression 
Conferences, only 12 papers [1–13] identify an aspect of scientific data in their title (floating-point data, 
data from simulation, numerical data, scientific data). The second evidence is the poor performance on 
some datasets. 
 
Table 1 shows the compression factors of the most effective compressors on datasets coming from 
simulations in fluid dynamics (Nek5000), shock (FLASH), and climate. SZ [13], ZFP [14], ISABELA 
[15], SSEM [16], and FPZIP [17] are lossy compressors. SZ, ZFP, and ISABELA are error bounded. We 
set the error bound to 10-6 for these datasets. FPZIP [17] and FPC [18] are lossless. Only NUMARCK [19] 
has been designed specifically for compression in time. Other compressors perform compression in space. 
The table shows that compressors achieve excellent compression factors on some datasets. It also shows 
that some data sets are “hard to compress”: compression factors lower than 10 will be of little help in 
addressing the compression challenges faced by scientific simulations and experiments.  



Unfortunately for their users, HACC and APS datasets (our two introductory examples) fall into this 
category of hard-to-compress data -sets (SZ and ZFP hardly manage to compress them by factors of 3 to 
5). Another element demonstrating that scientific data compressors are in their infancy is the lack of 
scalable compressor. Compressing large datasets in parallel today mainly consists of the concurrent 
execution of local compressor instances compressing dataset chunks in isolation. Except for pFPC and 
ISABELA, none of the existing compressors has a parallel implementation performing the compression 
considering all the data and not isolated chunks. 
 

Table 1: Compression factors of key compressors 

 
 
Considering that exascale execution and extreme-scale experiments will produce even more data in the 
near future (2020–2025), investment in lossy compressor technology for hard-to-compress scientific 
datasets is urgently needed in order to support the communication, storage, and analysis of this data. 
 
Beyond the research on compression, scientists also need to understand how to use lossy compression. 
The classic features of compressors (integer data compression, floating-point data compression, fast 
compression and decompression, error bounds for lossy compressors) do not characterize compressors 
specifically with respect to their integration into a high-performance computing and data analytics 
workflow.  
 
For example, in the IC imaging application, assuming a lossy compressor capable of a factor of 100 
compression, can we perform the tomography and the following data analytics directly from the 
compressed data? Obviously, if the following steps can work only from decompressed data, large storage 
and significant decompression time will be needed. If the data needs to be decompressed, can we 
decompress it only partially to allow for pipelined decompression, reconstruction, and analytics? Note that 
partial decompression requires random access in the compressed dataset, a capability that is not 
considered a priority today in lossy compressors (SZ and ZFP provide random access). The same set of 
questions applies to large scale simulations. If we can avoid data omission and compress the raw dataset 
by a factor of 100, can the following data analytics steps be performed on the compressed data? 
 
Using lossy compression for scientific data coming from simulations and experiment requires developing 
new techniques in order to perform data analytics directly on lossy compressed data or to enable the 
pipelining of decompression with data analytics.   
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