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I. I NTRODUCTION

Currently, the growth in the performance of supercom-
puters or high-end computing systems relies mainly on the
increase in parallelism provided by many cores and special
instruction sets. Consequently, researchers and developers
of numerical algorithms and libraries must consider massive
parallelism. At leastO (103) threads andO (105) compu-
tational nodes should be effectively utilized. This will be
a primary concern when developing novel algorithms and
implementation methods for systems over the next few years.
However, the situation will change within 10 years. It is
predicted that Moore’s law will end between 2025 and 2030.

When Moore’s law ends, we will face a turning point.
Although it is apparent that we cannot further improve the
flops of a single chip, it is hard to forecast future computer
and processor architectures. However, bytes will continue
to increase. For example, three dimensional stacking and
silicon photonics technologies will contribute to increases
in the bandwidth between memory and processors, and be-
tween computational nodes. Moreover, non-volatile memory
will be used to reduce power requirements.

However, to take full advantage of the benefits of the
increase in bytes provided by these technologies in practical
analyses, we must change our computational paradigm and
numerical algorithms. Over the last decade, algorithms that
use more flops and less bytes have been preferable, but now
we must focus on increasing bytes but decreasing flops.
However, efficient use of these new technologies is not
straightforward. For future algorithms, we should consider
complex and deep memory hierarchies, the heterogeneity
of memory latencies, and the efficient use of logical units
attached to memory modules. For example, we should
intensively investigate bandwidth and latency reducing al-
gorithms, which make more use of lower layers with higher
memory bandwidths or reduce global synchronizations and
communications.

In real applications, flops per watt is more important
than flops. Many real world applications including bid data
analyses rely on improvements in the flops per watt to lead
to social innovations. Fortunately, the flops per watt can
be improved even if Moore’s law ends and the number of
transistors that can operate for a fixed power input does not
increase. For specific applications or computational kernels,
we can effectively use special instructions (e.g., SIMD),

accelerators, and reconfigurable hardware (e.g., FPGA) to
increase the (effective) flops per watt. We should investigate
novel implementation methods for these hardware systems
and associated algorithms for the typical computational
kernels required by real world applications. This research
could also help to reduce the power consumption in real
applications running on current or near future systems.

II. OBJECTIVES

Considering the above discussion, we have developed
algorithms, libraries, and frameworks that effectively utilize
massive parallelism, increases in data transfer rates, and low
power systems.

In our research, we focused on four computational ker-
nels: (1) iterative stencil computations; (2) transient analy-
ses; (3) approximate matrix computations; and (4) sparse
matrix computations. These kernels are used in various
simulations such as plasma simulations, computational fluid
dynamics, earthquake simulations, social system analyses,
information sciences, data analyses, and electromagnetic
field analyses.

A. Iterative stencil computations

In iterative stencil computations, we focused on the three
dimensional finite difference time domain (FDTD) method,
which is the most popular method for the electromagnetic
field wave simulations. The 3D FDTD has a more complex
stencil structure than the 7 point finite difference method.
We have successfully applied temporal tiling to the method
and also developed an auto-tuning method for the tile shape
[1]. We are currently developing an implementation of the
tiled 3D FDTD method that uses many core processors and
GPUs, which must effectively use more than hundreds of
threads.

B. High performance parallel multigrid solver in space and
time for transient analyses

To accelerate transient analyses, we considered a parallel
multigrid method in time. In [2], we developed a parallel
two-level multigrid method in time for the non-linear finite
element analyses of electric motors. Our method is more par-
allelized than the conventional parallel method in space. We
are continuing this research by considering the ”algebraic”-
type parallel multigrid method in time.



C. Approximate matrix computations

We have paid special attention to H-matrices. An H-matrix
is an approximation of a dense matrix. H-matrix methods
reduce computational costs and memory requirements when
applied to dense matrices. Many researchers have success-
fully applied this technique to various applications such as
boundary element analyses or N-body problems. The H-
matrix has a similar function to the fast multipole method
(FMM). However, the FMM is a low B/F method and the
H-matrix is a relatively high B/F method, so it is worth
investigating for the system in the post Moore’s law era.
We have already developed a distributed parallel H-matrix
library called ”HACApK” with a software framework for
BEM analyses [3] [4]. The HACApK library supports hybrid
multi-processes and threads parallelism, but we will further
improve it so that applications can run a huge number of
processes and threads. Moreover, the library will be tuned
for accelerators and future machines.

D. Sparse matrix computations and linear solvers

Sparse matrix computations are used in conventional
PDE analyses and various new types of simulations such
as those used to analyze big data. We investigated sparse
matrix vector multiplication kernels, linear iterative solvers,
and eigenvalue solvers. We will attempt to develop new
algorithms and implementation methods for these kernels on
many-core processors, accelerators, FPGAs, and computing
units with associated memory.

In [5], we proposed a new fill-in strategy for incomplete
Cholesky factorization preconditioning. Using this tech-
nique, nonzero blocks are defined for a coefficient matrix,
and fill-ins are allowed in the blocks. Consequently, the
preconditioning steps (forward and backward substitutions)
consist of small dense matrix computations that are effi-
ciently performed using SIMD instructions. Fig. 1 shows
the vectorized implementation of multiplication of a small 2
by 2 matrix and a vector using intrinsic functions for SIMD
instructions. Table I lists the numerical results using test
matrices from the UF matrix collection, where the algebraic
block multi-color ordering is used for parallelization of IC
preconditioning. Our proposed preconditioning technique,
ICB, mostly performs better than the conventional IC(0) pre-
conditioning method because of its improved convergence
and SIMD vectorization.
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// Compute Ap=q
__m128d XA0, XA1, XP0, XP1, XQ0;
Iofs=0;
Vofs=0;
for(k=0; k<Nd; k++){

XQ0 = _mm_setzero_pd();
for(j=brow_ptr[k]; j<brow_ptr[k+1]; j++){

Jofs = bcol_ind[j] * 2;
XP0 = _mm_load1_pd(&p[Jofs]);
XP1 = _mm_load1_pd(&p[Jofs+1]);
XA0 = _mm_load_pd(&bval[Vofs]);
XA1 = _mm_load_pd(&bval[Vofs+2]);
XA0 = _mm_mul_pd(XA0,XP0);
XQ0 = _mm_add_pd(XQ0,XA0);
XA1 = _mm_mul_pd(XA1,XP1);
XQ0 = _mm_add_pd(XQ0,XA1);
Vofs+=4;

}
_mm_store_pd(&q[Iofs],XQ0);
Iofs+=2;

}

Figure 1. SIMD vectorized small 2 by 2 dense matrix vector multiplication
using intrinsic functions

Table I
NUMERICAL RESULTS OF THE PARALLELIZEDIC(0) AND ICB

PRECONDITIONEDCG SOLVERS BASED ON THEABMC METHOD

Dataset PreconditioningNumber ofElapsed Elapsed time
name # iteration time (s) per iteration (s)

G3 circuit IC(0) 256 2.38 9.28E-3
ICB(2×2) 206 2.11 1.02E-2

Flan 1565 IC(0) 1778 93.83 5.28E-2
ICB(4×1) 1631 72.31 4.43E-2

Hook 1498 IC(0) 1405 43.01 3.06E-2
ICB(2×2) 1347 35.33 2.62E-2

thermal2 IC(0) 1616 12.00 8.65E-3
ICB(2×1) 1517 12.20 8.04E-3

parabolic fem IC(0) 662 2.49 3.76E-3
ICB(4×1) 566 2.28 4.03E-3
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