The International Exascale Software

Project Roadmap '

I"H$968. ()" " +96, -.-%6/-#$0" (+061-2%63"*-+%p, " *4#$%5-* 6+%74'8" (4%59' 46 €945 (
5(=*-+9%&"84=9%/"*$"4+ U816 Y0/-*. 7 <+YAB<$-Vo/ $<+0/-* *"(=%/*"<(6#? @-4) +YA*"(#$%

"BB-99"+%/"*C"*"%;?"B0" (+%D<-C4(%; ?4+%59'$%; ?'<=?"*2+ 0 E<=4B%&'6"(F?+%1?'0%&<((4()+¢
E"(=*%A4*-+%59%7-46.+%/499%7* BB+%G'C-*.%H"*46'(+%63"*$%H-*-9=+0634#2"-9% H-*'<| +%65

H'464-+06K'2%H'.."+%6><."$"% L 6 MB (BEMHAG-=06!"2(6'(+%E" (F"2%6K"9-+% G 4#?" *=%K-(@"2+%

&"84=9%6K-2-6+%/499%K*"0-*+961-6<6%N"C"™*."+9659"4(%NA#?(-@6$2+%17'0"6%NA4BB-*.+%/' C%
3HH"C-+%E" '624%3".6<'$"+%,"<9%3-664("+9%b, -.-*%34#?4-96-+0b/-*(=%3'?*+%3"..24"6%3<-99-*+
0'9J)"()%P")-9+%HA*624%P"$"6 730HP%O%QRY, "BS"+%6&" (% G--=+%34.6<?46"%E". + % Q=% E-4-
I'2(%E2"9J+%8&"84=YE$A((-*+%3"*#IE (4*+961?'0"6%E.-*94()+ %G AHSYOE .-8-(6+ %6 A*-=0E. *-4. S+
E?24(FA%E<040"."+%04994"0%1"()+%!'?(%1"29*+%G"F--8%12"$<*+%5((-%1*-J-. 2-(+%3" - % T"9-*

5"=068"(%=-*Y%E. HdJ*-2%T-..-*+%,-)%04994"06+%G'C-*.%046(4- @ 6$4+%" (FHHK". 22%>-94#$
%

5C6.*"#%

Over the last twenty years, the open source community has provided more and more software on which
the worldOs High Performance Computing (HPC) systems depend for performapamantivity. The
community has invested millions of dollars and years of effort to build key components. But although the
investments in these separate software elements have been tremendously valuable, a great deal of
productivity has also been lostdaeise of the lack of planning, coordination, and key integration of
technologies necessary to make them work together smoothly and efficiently, both within individual
PetaScale systems and between different systems. It seems clear that this completedinated
development model will not provide the software needed to support the unprecedented parallelism
required for peta/exascale computation on millions of cores, or the flexibility required to exploit new
hardware models and features, such as traonsatimemory, speculative execution, and GPUs. This

report describes the work of the community to prepare for the challenges of exascale computing,
ultimately combing their efforts in a coordinated International Exascale Software Project.

%

Keywords
High Performance Computing, Software Stack, Exascale computing

! The International Exascale Software Project was organized by and has received ongoing support from a variety of
national agencies: In the United states, the Department of Energy Office of Advance Scientific Computing Research
(DOE-ASCR) and the Nationalc&nce Foundation Office of Cyberinfrastructure (NSEI); In France, the

Commissariat ~ I'’Znergie atomique et aux Znergies alternatives (CEA), Centre EuropZen de Recherche et de
Formation AvancZe en Calcul Scientifique (CERFACS), Agence nationale aééaaiee (ANR), INRIA and

Teratec; In the United Kingdom, Engineering and Physical Sciences Research Council (EPSRC); In Japan, The
University of Tsukuba, RIKEN, Kyoto University, Tokyo University and the Tokyo Institute of Technology.
Corporations contrilting to the staging of different IESP meetings have included Cray, EDF/EESI, IBM, Intel,

Fujitsu Ltd., and NVIDIA.

Table of Contents

1.1 INroduCtion oo e aeeeeeeeeeie, 1!
2.1 Destination of the IESP Roadmap s 3!
3.! Technology Trends and Their Impact on Exascale @ ...l 3!
3.1! Technology Trends .t e e, 4!
3.2] SCIENCE TreNdS oo e rerraaaaaas 6!
3.3! Key Requirements Imposed by Trends on the X -Stack .o, 7!
3.4! Relevant Politico -Economic Trends i e 8!
4.! Formulating Paths Forward for X - Stack Component Technologies 9!
4. 1] System SOftWare i e e 9!
4.1.1 ! Operating SYSIEMS ...viiiiiiiiiiciciiiee et e e, 9!
4.1.2 | RUNtIME SYSIEMS cooiiiiiiiiiiis e e 11!
4.1.3 11O SYStEMS cooiiiiiiiiieeeeeeiiee e eeeeaaeaa 15!
4.1.4 ! Systems ManNagemMeNt oovvviiiiiiiiiiiiiiiiiies e 18!
4.1.5 | External ENVIFONMENTS .oooiiiiiiiieieeeiiiiiiiiies avveeiienieee e e e e e e e e 221
4.2! Development ENVIroNMENS s 26 !
4.2.1 ! Programming MOEIS ... e 26!
4.2.2 1 FrameWOrKS coooiiiiiciiiiiieeeeiiiiiie e eeeeeaeaaaas 28!
4231 COMPIEIS ovviiiccicicicccccieee e rr—— 31!
4.2.4 1 Numerical LIbraries ...ccccococceeiiiiiiiiiiiiiices e e 33!
425 1 DEDUJUING covvviiiiiiiiiiiiieies e rr——— 35!
431 ApplicatioNS s e r—— 37!
4.3.1 ! Application Element: Algorithms i e, 37!
4.3.2 ! Application Support: Data Analysis and Visualizatio 3 I 40!
4.3.3 ! Application Support: Scientific Data Management ..., 43!
441 Cro ss-Cutting DIMENSIONS s 46!
R =11 1= o o 46!
4.4.2 | Power Management cccccccccciciiiiiiiiiiiiiies eeeeeeeeeeeeeeeeeeeeeeeeee e e 48!
4.4.3 ! Performance Optimization ...t s 52!
4.4.4) Programmability ..o s aeeeeean 541
45! Summary of X -Stack Priorities ... s 57!
5. ! Application Perspectives and Co -Design Vehicles ... 61!
5.1! From Here to Exascale: An Application Community View ... 62 !
5.2! IESP Application Co -Design Vehicl €Sccoiiis i, 63 !
5.3! Initial Considerations for CDV Analysis =~ i e, 64 !
5.41 Representative CDVS iiiiiiiiiiiie e e e 65 !
5.4.1 ! High Energy PhySiCSIQCD ..o et 65!
5.4.2 ! Plasma Physics/Fusion Energy SCIences cccccvvvciviiiiiieeeeeens eeveeeenn 66!
5.4.3 | Strategic Development of IESP CDVS . e, 68!
5.5! Matrix of Applications and Software Components Needs ... 68 !
6.! Perspectives on Cooperation between IESP and HPC Vendor
COMMUNILIES oo et ees aeeeeeiaaaeens 70!
6.1! Challenging Issues for Vendor/Community Cooperation ... 71!
6.2! Taxonomy of Development/Support Models e .72

6.3! Requirements and Methods i e 73!

6.4! Software TeStiNG .iiiiiiiiiiiies e e, 76!
6.5] RecommendationS .. e ————— 76!
7.1 IESP Organization and GOVErnanCe . eeeeeeenens 77!
7.1! Importance of a BUSINESS CASE s e 77!
7.2! Application of Current Funding Mechanisms 781
7.3! Governance Model .. 78!
7.41 Vendor INteracCtion .o eeeeeee———————— e 78!
75! TIMEINE s e e ————— 79!
8.1 BIbliography s 81!

1. Introduction

The technology roadmap presented here is the resuo than a yeasf coordinated effort withithe

global software community for higbnd scientificcomputing It is the product of a set of first steps taken

to address a critical challenge that now confronts modern science and is produced by a convergence of
three factors(1) the compelling science case to be made, in both fields of deep intellateuedt and

fields of vital importance to humanity, for increasing usable computing power by orders of magnitude as
quickly as possibleg(2) the clear and widely recognizetdequacyof the current high end software
infrastructure, in all its componeateas, for supporting this essential escalation(@8nthe near

complete lack of planning and coordination in the global scientific software community in overcoming
the formidable obstacles that stand in the way of replacing it. At the beginning ofa2@@§e group of
collaborators from this worldwide community initiated théernational Exascale Software Project

(IESP to carry out the planning and the organization building necessaopethis vitally important

problem.

With seed funding from kegovernment partners in the United States, European Union and Japan, as well
as supplemental contributions from some industry stakeholders, we formed the IESP around the following
mission:

The guiding purpose of the IESP is to empower itgh resolutim and dag-intensive
science and engineering research through the year 2020 by developing a plénaor
common, higklquality computational environment for petaldexascale systems afi2)
catalyzing, coordinating, and sustaining the effort of theriiBonal open source
software community to create that environment as quickly as possible.

Thereexistgood reasons to think that such a plan is urgently needed. First and foremost, the magnitude of
the technical challenges for software infrastructues the novel architectures and extreme scale of

emerging systems bring with thaedaunting[13, 16]. These problems, which are already appearing on

the leadershizlass systems of the US National Science Foundation (NSF) and Deptotianergy

(DOE), as well as on systems in Europe and Asia, are more than sufficient to require the wholesale
redesign and replacement of the operating systems, programming models, Jiaratie®ls on which

high-end computing necessarily depends

Second, the complex web of interdependencies and side effects that exist among such software
components means that making sweeping changes to this infrastructure will require a high degree of
coordination and collaboration. Failure to identify criticaldsobr potential conflicts in the software
environment, to spot opportunities for beneficial integration, or to adequately specify component
requirements will tend to retard or disrupt everyoneOs progress, wasting time that can ill afford to be lost.
Sincecreating a software environment adapted for extrsoade systems (e.g., NSFOs Blue Waters) will
require the collective effort of a broad community, this community must have good mechanisms for
internal coordination.

Third, it seems clear that the scofddh®e effort must be truly internationdh terms of its rationale,

scientists in nearly every field now depend on the software infrastructure eémigtomputing to open

up new areas of inquiry (e.g., the very small, very large, very hazardous, wapiezd to dramatically
increase their research productivity, and to amplify the social and economic impact of theit work
serves global scientific communities who need to work together on problems of global significance and
leverage distributed reso@g in transnational configurations. In terms of feasibility, the dimensions of
the task totally redesigning and recreating, in the period of just a few years, the massive software
foundation ofcomputationakcience in order to meet the new realities df@xescale computin are

simply too large for any one country, or small consortium of countries, to undertake on its own.

The IESP was formed to help achieve this goal. Beginnidgiil 2009, we held a series of three
international workshops, one eachthe United States, Europnd Asiain order to work out a plan for

doing so Information aboutand the working products of all these meetjrmgs be found at the project
website, www.exascale.artn developing a plan for producing a new softwareaisifructure capable of
supporting exascale applications, we charted a path that moves through the following sequence of
objectives:

1. Make athorough assessment of needs, issues and strategiescessful plan in this arena
requires a thorough assessmainthe technology drivers for future peta/exascale systems and of
the shortterm, mediurterm, and longterm needs of applications that are expected to use them.
The IESP workshops brought together a strong and Hyaseld contingent of experts in all
area of HPC software infrastructure, as well as representatives from application communities
and vendors, to provide these assessments. As described in more detail below, we also leveraged
the substantial number of reports and other material on future seippleations and HPC
technology trends that different parts of the community have created in the past three years.

2. Develop a coordinated software roadmdajme results of the groupOs analysis have been
incorporated into a draft of a coordinated roadmagnidéd to help guide the open source
scientific software infrastructure effort with better coordination and fewer missing components.
This document represents ttrrentversion of that roadmap.

3. Provide a framework for organizing the software researchrmanity With a reasonably stable
and completerersion of the roadmap in hand, we will endeavor to develop an organizational
framework to enable the international software research community to work together to navigate
the roadmap and reach the appointestithatioN a common, high quality computational
environment that can support extresale science on extrerseale system§ he framework
will include elements such as initial working groups, outlines of a system of governance,
alternative models for shed software development with common code repositaaias,
feasible schemes for selecting valuable software researamnandragingts translation into
usable, productionuality software for application developers. This organization must also
foster anchelp coordinate R&D efforts to address the emerging needs of users and application
communities.

4. Engage and coordinat&ith the vendor community inrosscuttingefforts To leverage
resources and create a more capable software infrastructsugpfoorting exascale science, the
IESP is committed to engaging and coordinating with vendors across all of its other objectives.
Industry stakeholders have already made contributions to the workshgpsh{eetives 1 and 2
above) and we expect simildirnot greater participatignn the effort to create a model for
cooperation awell ascoordinated R&D programs for new exascale software technologies.

5. Encourage and facilitate collaboration in education and trainilibe magnitude of the changes
in progamming models and software infrastructure and tools brought about by the transition to
peta/exascale architectures will produce tremendous challenges in the area of education and
training As it develops its model of community cooperation, the IESP plast,therefore, also
provide for cooperation in the production of education and training materials to be used in
curricula, at workshops and dine.

This roadmap document, whiébcuseson objectives 1 and 2 above, represents the main result of the first
phase of the planning procesdthough some work on task£B has already begun, we plan to solicit,

and expect to receive in the near future, further input on the roadmap from a much broader set of
stakeholders in theomputationakcience communityThis version of the roadmap begins that process by
including more extensive input from the science application community, international funding agencies,
and vendor partnerghe additional ideas and information we gather as the roadmap is disseminated are
likely to produce changes that need to be incorporated into future iterations of the document as plans for
objectives 86 develop and cooperative research and development efforts begin to take shape.

2

2. Destination of the IESP Roadmap

The metaphor of the roathp is intended to capture the idea that we need a representation of the world,
drawn from our current vantage point, in order to better guide us from where we are now to the
destination we want to reach. Such a device is all the more necessary whencallaggion of people,

not all of whom are starting from precisely the same place, togedke the journey. In formulating such

a map, agreeing on a reasonably clear idea of the destination is obviously an essential first step. Building
on the backgrounknowledge that motivated the work of IESP participants, we define the go#iehat
roadmap is intended to help our community reach as follows:

By developing and following the IESP roadmap, the international scientific softesaarch
community seeke ttreate acommon,open source software infrastructur®r scientific computing
that enables leadingdge science and engineerigipups to developpplicationsthat exploit the
full power of the rascale computing platforms that will come-loame in the 2182020 timeframe.
We call this integrated collection of software the extrecele/exascale software stack osstack

Unpacking the elements of this goal statement in the context of thepeddtmedso far by the IESP
reveals some of the characteristics that thegta€k must possess, at minimum:

I The Xstackmustenablesuitably designedcience applications to exploit the full resources of the
largest systems'he main goal of the >$tack is tasupport groundbreaking research on
tomorrowOs exascale computing platfofBysusing these massive platforms andtéck
infrastructure, scientists should be empowered to attack problems that are much larger and more
complex, make observations and preaict at much higher resolution, explore vastly larger data
sets and reach solutions dramatically faster. To achieve this goal,-gtack must enable
scientists to use the full power of exascale systems.

I TheX-stackmustscaleboth up and dowthe platfom development chail$cience today is done
on systems at a range of different scales, from departmental clusters to the worldOs largest
supercomputers. Since leading research applications are developed and used at all levels of this
platform development @in, the Xstack must support them well at all these levels.

I TheX-stackmustbe highly modular, so as to enable alternative component contributiofise
X-stack is intended to providecammorsoftware infrastructure on which the entire community
buildsits science applications. For both practical and political reasonsdestainability, risk
mitigation), the design of the-Xtack should strive for modularity that makes it possible for many
groups to contribute and accommodate more tharchoieein each software area.

I The Xstack must offer open sourakternatives for all components in theskack For both
technical and mission oriented reasons, the scientific software research community has long
played a significant role in the open source safsnmovement. Continuing this important
tradition, the Xstack will offer open source alternatives for all of its components, even though it
is clear that exascale platforms from particular vendors may support, or even require, some
proprietary software aoponents as well.

3. Technology Trendsand Theirl mpacton Exascale

The design of the extrerseale platforms that are expected to become available in 2018 will represent a
convergence of technological trends and the boundary conditions imposed by overemnalira of

algorithm and application software developméithough the precise details of these new designs are

not yet known, it is clear that they will embody radical changes along a number of different dimensions as
compared to the architectures oflayOs systems and that these changes will render obsolete the current
software infrastructure fdarge scalescientific applications. The first step in developing a plan to ensure

3

that appropriate system software and applications are ready and avalabl¢hese systems come on

line, so that leading edge research projects can actually use them, is to cezefedsthe underlying
technological trends that are expected to have such a transformative impact on computer architecture in
the next decadd hese factors and trends, which we summarize in this section, provide essential context
for thinking about the looming challenges of tomorrowOs scientific software infrastrtiotuedore

describing them lays the foundation on which subsequent seofititis roadmap document builds.

3.1 Technology Trends

In developing a roadmap ftine X-stack software infrastructure, the IESP has been able to draw on
several thoughtful and extensive studies of impacts of the current revolution in computer archit8cture
15]. Asthese studies make clear, technology trends over the next debeatally speaking, increases of
1000X in capabilityover todayOs most massive computing systemsyliipledimensions, as well as
increases of similar scale in data volur®asill force adisruptive change in the form, function, and
interoperability of future software infrastructure components and the system architectures incorporating
them. The momentous nature of these changes can be illustrated for several criticalesyedtem

parametes:

I ConcurrencpMoore@ law scaling in the number of transistors is expected to continue through
the end of the next decade, at which point the minimal VLSI geometries will be as small as five
nanometersUnfortunately, the end of Dennard scaling meansdluek rates are no longer
keeping pace, and may in fact be reduced in the next few years to reduce power consAsiption
a result, the exascale systems on whichxtfeack will run will likely be composed of hundreds
of millions of arithmetic logic uné (ALUs). Assuming there are multiple threads per ALU to
cover mainmemory and networking latencies, applications may contain ten billion threads.

I Reliability DSystemarchitecture will be complicated by the increasingly probabilistic nature of
transistobehavior due to reduced operating voltages, gate oxides, and channel widths/lengths
resulting in very small noise margir@iven that stat®f-the-art chips contain billions of
transistors and the multiplicative nature of reliability laws, building regitemputing systems
out of such unreliable componemtdl becomean increasinghallenge This cannotbe cost
effectively addressed with pairing or TNIRather, itmust be addressed bysfack software and
perhaps even scientific applications.

I Power conemptionbTwenty years ago, HPC systems consumed less theayawatt The Earth
Simulator was the first such system to exceet¥0. Exascale systems could consume over 100
MW, and few of todayOs computing centers have either adequate infrastrudalineetcsuch
power or the budgets to pay forTthe HPC community may find itself measuring results in terms
of power consumed, rather than operations perforifieel X-stack and the applications it hosts
must be conscious of théstuationand act to mimize it.

Similarly dramatic examples could be produced for other key variables, satdrage capacity
efficiency andprogrammability

More important, a close examination shows that changes in these parameters are interrelated and not
orthogonal. Foexample, scalability will be limited by efficiency, as are power and programmability.

Other cross correlations can be perceived through analysis. The DARPA Exascale Technoloph8Ftudy
exposes power as the pacesetting parameter. Although an exact power consumption constraint value is not
yet well defined, with upper limits of dayOs systems on the order ofégawatts, increases of an order

of magnitude in less than 10 years will extend beyond the practical energy demands of all but a few
strategic computing environmen#s politico-economic pain threshold of 2Begawatts has lea

suggested (by DARPA) as a working boundary. With dramatic changes to core architecture design,

system integration, and programming control over data movement, best estimates foh@s0S

4

systems at the tdanometer feature size is a factor of 3 timesthis amount. One consequence is that

clock rates are unlikely to increase substantially in spite of the IBM Power architecture roadmap with
clock rates between 0.5 and 4.0 GHz a safe regime and a nominal value of 2.0 GHz appropriate, at least
for somelogic modules. Among the controversial questions is how much instrdetiehparallelism

(ILP) and speculative operation is likely to be incorporated on a per processor core basis and the role of
multithreading in subsuming more of the figeined control space. Data movement across the system,
through the memory hierarchy, and even for registeegister operations will likely be the single

principal contributor to power consumption, with control adding to this appreciably. Since future systems
can Il afford the energy wasted by data movement that does not advance the target computation,
alternative ways of hiding latency will be required in order to guarantee, as much as possible, the utility of
every data transfer. Even taking into account the efialstess of todayOs conventional setereel

systems and the energy gains that careful engineering has delivered for systems such as Blue Gene/P, an
improvement on the order of 100X, at minimum, will still be required.

As a result of these and other olvsgions, exascale system architecture characteristics are beginning to
emerge, though the details will become clewlly as the systems themselves actually develop. Among the
critical aspects of future systems, available by the end of the next decade wehian predict with some
confidence are the following:

I Feature size of 22 to 11 nanometers, CMOS in 2018

I Total average of 2picojoules per floating point operation

I Approximately 10 billioaway concurrencyfor simultaneous operation and latency hiding

I 100 million to 1 billion cores

I Clock rates of 1 to 2 GHz

I Multithreaded fine-grained concurrencyof 10- to 10Gway concurrency per core

I Hundredsof cores per die (varies dramatically depending on core type and other factors)

I Global address space witha#che coherence; extensions to PGAS (e.g., AGAS)

I 128 petabyte capacity mix of DRAM and nonvolatile memory (most expensive subsystem)
I Explicitly managed higispeed buffer caches; part of deep memory hierarchy

I Optical communications for distances > 10 certins, possibly intersocket

I Optical bandwidth of terabit per second

I Systemwide latencies on the ordeterisof thousands of cycles

I Active power management to eliminate wasted energy by momentarily unused cores

I Fault tolerance by means of gracedelgradation and dynamically reconfigurable structures

I Hardwaresupported rapid thread context switching

I Hardwaresupported efficient messag@thread conversion for messadaven computation

I Hardwaresupportedlightweight synchronization mechanisms

I 3-D packaging of dies for stacks of 4 to 10 dies each including DRAM, cores, and networking

Because ofhe nature of the development of the underlying technology most of the predictions above
have an error margin of -60% or a factoof 2 independent of spdid roadblocks that magrevent
reachingthe predicted value.

3.2 Science Trends

A basic driver of the IESP is the fact that toenplexity of advanced challenges in science and
engineering continues to outpace our ability to adequately address them thrail@blecomputational
power.Many phenomena can be studity through computational approaches; wealbwn examples
include simulating complex processe<limate and astrophysickcreasingly, experiments and
observational systems are finding thatonly arethe data they generate exceeding petabytes and rapidly
heading toward exabytes, but the computational power needed to process thaldatexpected to be in
exaflops range.

A number of reports and workshops have identified key science mgedeand applications of societal
interest that require computing at exaflops levels and bejiohd, 14, 17]. Here we summarize some of

the significant findings on the scientific necessifyexascale computg wefocus primarily on the need

for the software erivonments needed to support the science activill€E held eight workshops in the

past year that identified science advances and important applications that will be enabled through the use
of exascale computing resourc@&he workshops covered the follawg topics: climate, higlenergy

physics, nuclear physics, fusion energy sciences, nuclear energy, biology, materials science and
chemistry, and national nuclear securithe US National Academy of Sciences published the results of a
study in the report®e Potential Impact of Higknd Capability Computing on Four lllustrative Fields

of Science and Engineerin§@]. The four fields were astrophysics, atmospheric sciences, evolutionary
biology, and chemical separations

Likewise,NSFhas embarked on a petascale computing program that has funded dozens of application
teams through its Pefspps and PRAC programs, across all areas of science and engineering, to develop
petascale applicatiesnand is deploying petaflops systems, including Blue Waters, expected to come on
line in 2011 It has commissioned a series of task forces to help plan for the transition from petaflops to
exaflops computing facilities, to support the software developmezgssary, and to understand the

specific science and engineering needs beyond petascale

Similar activities are seen in Europe and Asia, all reaching similar conclusions: significant scientific and
engineering challenges in both simulation and dataysisadlready exceed petaflops and are rapidly
approaching exafloplass computing needs Europe the Partnership for Advanced Computiitg
Europe(PRACE)involvestwenty partner countriesupports access to wortdass computerand has
activities aimed at supporting mufietaflops and eventually exaflepsale systems for sciencéhe

European UniorfEU) is also planning to launch projects aimed at petascale and exascale computing and
simulation. Japan has a project to builtiOepetaflop system and has historically supported the
development of software for key applications such as climaea result, scientific and computing
communities, and the agencies that support them in many countries, have been meeting to plan joint
actvities that will be needed to support these emerging science trends.

To give a specific and timely examplereent repoftstates that the characterization of abrupt climate
change will require sustained exascale computing in addition to new paradigatismfite change
modeling. The types of questions that could be tackled with exascale comjamihgannot be tackled
adequately without itihcludethe following

I =How do the carbon, methane, and nitrogen cycles interact with climate dhange?
I =How willlocal and regional water, ice, and clouds change with global war@ing?

I =How will the distribution of weather events, particularly extreme events, determine regional
climate change with global warmin@?

2 Science Prospects and Benefits of Exascale Comp@iRtyL/TM-2007/232, December 2007, page 9,
http://www.nccs.gov/wgontent/media/nccseports/Science%20Case%20_012808%20v3__final.pdf

6

I =What are the future skavel and ocean circulatiathanges®

Among the findings of the astrophysics workshop and other studies argdahealke computing will
enablecosmology and astrophysidsmlationsaimed athe following:

I Measuring the masses and interactions of dark matter

I Understanding andalibrating supernovae as probes of dark energy
I Determining the equation of state of dark energy

I Measuring the masses and interactions of dark matter

I Understanding the nature of ganmnag bursts

Energy securityThe search for a path forward in assurinffisient energy supplies in the face of a
climate-constrained world faces a number of technical challenges, ranging from issues related to novel
energy technologieso issues related to making existing energy technologies more (economically)
effective andsafer, to issues related to the verification of international agreements regarding the emission
(and possible sequestration) of £4hd other greenhouse gases. Among the science challengles are
following:

I Verification of Ocarbon treatyO compliance

I Improvement inthe safety, securityandeconomics of nuclear fission

I Improvament inthe efficiency of carbonbased electricity producticendtransportation
I Improvament in thereliability and security irthe (electric) grid

I Nuclear fusion as practicalenergy source

Computational research will also play an essential role in the development of new approaches to meeting
future energy requiremengs.g., wind, solar, biomass, hydrogandgeothermg| whichin many cases
will require exascale power.

Industrial applicationssuch asimulationenhanced design and production of complex manufactured
systemsandrapid virtual prototypingwill also be enabled by exascale computii@ characterize
materials deformation and failure in extreme conditioflerequire atomistic simulations on engineering
time scales that are out of reach with petascale systems.

A common theme in all of these studies of ithportantscience and engineeriagplications that are
enabled by exaflops computing poviethat thg have complex structures and present programming
challenges beyond just scaling to many millions of procesBorsexamplemany of thesapplications
involve multiple physical phenomena spanning many decades of spatial and temporalssteeatio

of computing power to memory grows, the Oweak sc@imghich has been exploited for most of the last
decadewill increasingly give way to Ostrong scali@gvhich will make scientific applications
increasingly sensitive to overhead and noise generatdtkeb{r$tack These applications are increasingly
constructed of components developed by computational scientists worldwide, atidtdekmust

support the integration and performance portability of such software.

3.3 Key Requirements Imposed by Trends on the X-Stack

Thecitedtrends in technology and applications will impose severe constraints on the design -of the X
stack Below are crossutting issues that wikffectall aspects of system software and applications at
exascale.

I Concurrency: A 1000x increasa concurrency for a single job will be necessary to achieve
exascale throughputlew programming models will be needed to enable application groups to

7

address concurrency in a more natural Wiays capabilitywill likely have to include Ostrong
scaling®ecausgrowth in the volume of main memonyilixnot match that of the processors
This in turn will require minimizing any »tack overheads that might otherwise become a
critical Amdabhl fraction.

I Energy: Since much of the power in an exascale systdhbwiexpended moving data, both
locally between processors and memory as well as globally,-8tack must provide
mechanisms and APIs for expressing and managing data lod&kgewill also help minimize
the latency of data accessA®Is also shoulthe developed to allow applications to suggest other
energy saving techniques, suchasing cores on and off dynamically, even though these
techniques could result in other problems, such as more faults/errors.

I Resiliency. The VLSI devices from whichxascale systems will be constructed will not be as
reliable as those used toda#yl software, and thereforall applicatiors, will have to address
resiliency in a thorough way if they are to be expected to run at stetee the X-stack will
have to reognize and adapt to errors continuoyalywell as provide the support necessary for
applications to do the same.

I Heterogeneity Heterogeneous systems offer the opportunity to exploit the extremely high
performance of niche market devices such as GRdgame chipse(g, STI Cell) while still
providing ageneralpurposeplatform An example of such a system today is Tokyo TechOs
Tsubame, which incorporates AMD Opteron CPUs along with Clearspeed and Nvidia
acceleratorsSimultaneously, largscale scietific applications are also becoming more
heterogeneous, addressing multiscale problems spanning multiple disciplines.

I 1/O and Memory: Insufficient I/0 capability is a bottleneck tod&@ngoing developments in
instrument construction and simulation desigake it clear that data rates can be expected to
increase by several orders of magnitude over the next dedaelenemory hierarchy will change
based on both new packaging capabilities and new techndloggl RAM and NVRAM will be
available either on arery close to the nodeghe change in memory hierarchy will affect
programming models and optimization.

3.4 Relevant Politico -Economic Trends

The HPC market is growing at approximatelydercenper year The largesscale systems, those that

will supportthe first exascale computations at the end of the next decade, will be deployed by government
computing laboratories to support the quest for scientific discovalgse capability computations often
consume an entire HPC system and pose difficult ctgdlefor concurrent programming, debugging and
performance optimizatiomhus, publiclyfunded computational scientists will be the first users of the X

stack and have a tremendous stake in seeing that suitable software exists, whickisentdOstréor

IESP.

In the late 1980s, the commercial engineering market place, spanning diverse fields such as computer
aided engineering and oil reservoir modeling, used the same computing platforms and often the same
software as the scientific communifyhis isfar less the case todayhe commercial workload tends to

be more capacity oriented, involving large ensembles of smaller computdtienextreme levels of
concurrency necessary for exascale computing suggests that thimt&rgndt changeso it is not tear

how muchdemand for those features of thes¥ack unique to exascale computing from commercial HPC
usersOn the other hand, the HPC vendor commuisityager to work with, and leverage the research and
development effort of, the IESP software comntyunio that end, plans for cooperation and coordination
between the IESP software and the HPC verndormunity are being developeste summarize the

current state of this discussionSedion 6.

4. Formulating Paths Forward for X -Stack Component
Technologies

In this section of the roadmap, the longest and most detailed, we undertake the difficult task of translating
the critical system requirements for thes¥ack, presented fBection 3 into concrete recommendations

for research and development agendagémh of the software areas and necessary components of the X
stack.The roadmapping template we used roughly follows the approach described in the excellent study
from Sandia National Laboraiesby Garcia and Braj12]. Accordingly, the discussioof each

component oarea is divided ito the following parts:

I Technologyand sciencelrivers: Theimpactsof the criticaltechnology trendand science
requirements must be described and analyzed for each software area and/or component of the X
stack.Theseimpactsrepresent technologgnd sciencerivers foreach such area/component of
the X-stack, and eacimust be evaluated in terms of how well or poorly current technologies
address the target requirements and where the obstacles to progress lie.

I Alternative R&D strategies Once the technologgnd sciencdrivers are identified and studied,
the different possible lines of attack on the problems and challenges inviok@fdy asve can
see them today, need to be described and explored.

I Research anddevelopment agenda recommendationglternative R&D strategies in each area
need to be evaluated and rankaaldactual plans, including specific milestones, must be drawn
up. Clearly these plans must take into account a variety of factors, many of wh&hden (or
should be) described elsewhere in the roadmap.

I Crosscutting Considerations Many of the parts of the-Xtack will haveinterdependencies and
crosscutting effectgelated toother component areaallusions to these effectse likely to be
laced or scattered through the previousdtsebsections. In many casewill be desirable to
breakouta summary of these considerations as a separate section in order to highlight gaps or to
ensure that activities are suitably coaratied.This version of theoadmap focuses on four such
crosscutting areas: resiliency, powtalcostof-ownership, performan¢and programmability.

4.1 System Software

The system software list is often described as that software that managesregstaees on behalf of

the application but is usually transparent to the.u#s&rthe purposes of mapping the road to a viable X
stack, we include under this heading the operating system, runtime system, I/O system, and essential
interfaces to the exterhanvironment (e.gdata repositories, reéilme data streamsand clouds). Each of
these areas is treated in turn below.

4.1.1 Operating Systems
4.1.1.1 Technology Drivers for Operating Systems

Increasing importance of effective management of increasingly complexcesbExascale systems
will increase the complexity of resources available in the sydWareover,in orderto attain the benefits
offered by an exascale system, effective management of these resuilldicesncreasingly important

As an example, coiger the execution environment presented bgascale systenCurrent systems

provide hundreds of thousands of nodes with a small number of homogeneous computational cores per
node Exascale systems will increase the complexity of the computationakcesauwo dimensions

First, the core count per node will increase substanti@éligond, the corenost likelywill be

heterogeneous (e.g., combining strelamsed cores with traditional cores based on load/starajidition

9

to increasing the complexigf the computational resources, the resources shared between the
computational resources (e.g., the memory bus) can have a far greater impact on performance.

Besideghe changes in the resources provided by an exascale system, the programming models will
undergo an evolutiann particular, norMPI programming models will undoubtedly have increasing
presence in exascale systeffilse only trends clear at the present tiame thathere will be an increasing
emphasis on datacentric computations and thatraneging models will continue to emphasize the
management of distributedemory resource&iven the evolution in programming models, we can also
expect that individual applications will incorporate multiple programming moHetsexample, a single
applicaion may incorporate components that are based on MPI and other components that are based on
sharedmenory. The particular combination of programming models may be distributed over time
(different phases of the application) or space (some of the nod&tRiyethers run shredmenory).

The purpose of an operating system is to provide a bridge between the physical resources provided by a
computing system and the runtime system needed to implement a programming model. Given the rapid
change in resources aptbgramming models, a common operating systamst be definedadf the

exascale communityT his will provide the gascale communitwith a commorset ofAPIsthatcanbe

used by a runtime system to support fully autonomic management of resources, inatizgitige

management policies that identify and react to load imbalances and the intermittent loss of resources
(resilience) In order to achieve this godhe APIs supported by the operating systeastexpose low

level resource AP|aand the runtimenustbeaware of the context (within the application) of a specific
computation.

4.1.1.2 Alternative R&D Strategies for Operating Systems

Several approaches could be adopted in the development of a comopariafing systerfor exascale
systemsOne approach is to elve an existing OSpr example Linux, Plan 9or IBMOs Compute Node
Kernel An alternaive approach is to start with a new design to address the specific negdsazfle
systemsThe first approach has the advantage that the APIs provided by thev®8lteady been

defined and many runtime implementations have already been developed for thévlbRdsver, these
operating systems also provide drivers for many of the devices that will be \seddale systems (e.g.,
the PCI bus)However, becausé¢ APIs are based on the resources provided by previous systems (many
of these operating systems were defined nearly acealiury ago), they may not provide the appropriate
access to the resources providthy anexascale systenn the end, it is likelthat a hybrid approach,
which builds on APIs and existing code bases and redesigns and modifies the most specialized
componentswill prevail.

Theoperating systermustmaintain a high degree of flexibility his flexibility can be accomplished
only by minimizing the resource management strategies that are required by the operating system.

4.1.1.3 Recommended Research Agenda for Operating Systems

The first step in the development of a common OS foethscale community is to develop a framework
for the OS This should be undertaken by a small collection of researchers who have significant
experiencen implemening HPC operating systems.

One of the critical challenges in developing HPC operating systems is our inability to study the impact of
resource managemedecisions Oat scale.O To remedy this problem, we will need to develop a full
system simulation capabilith number of effort@areaddresig parts of the fullsystem simulation

capability; however, these efforts need to be coordinated to ensureghatrovide the needed

capability.

The most critical APIs provided by the community OS will include APIs to support amdrintranode
communication, interand intranode thread management, and explicit management of the memory

1C

hierarchy provided by thentire systemAPIs to support energy management and resilience will also be
critical. However, these APIs require more experience and, as such, their final definition should be
deferred until the final stages of this research activity.

The critical resea@h areas in which substantial, if rgroundbreakinginnovations will be required in
order to reach this goal are the following:

I Fault tolerant/masking strategies for collective OS services
I Strategies and mechanisms for power/energy management
I Strategis for simulating fullscale systems

I General strategies for global (collective) OS services

Timeframe Targets and MilestonesDOperating Systems

Communitydefined framework for HPC operating systetimatdefines a set of core

201011 components and aesegrained APIs for accessing the resources provided by an
system.

201213 Scalable, fullsystem simulation environmetiitat can be used to evaluate resource
management mechanisms at scale

201415 APIs for finegrained management of internoclammunication, thread managemei
and memory hierarchy management.

201617 APIs for finegrained management of power (energy) and resilience.

At least one runtime system that provides global, autonomic management of th
201819 resources provided by &PC systemThis runtime system should provide for
transparent resilience in the presence of failing resources.

4.1.2 Runtime Systems
4.1.2.1 Technology and Science Drivers for Runtime Systems

The role of a runtime system is to act on behalf of the applicatioratohing its algorithmOs
characteristicand requirements to the resources that the system makes available in order to optimize
performance and efficiency. By programming to the runtime systemOs interface, application developers
are freed from the mundane loften difficult jobs of task scheduling, resource managenaamd other
low-level operations that would force them to think about the computer rather than the science they are
trying to da As thedescription of the technology trends and science requiresnadoive suggestit will

be extremely challenging to create runtime systems that can continue to fulfilléhi€he design of
tomorrowOs runtime systems will be driven not only by dramatic increases in overall system hierarchy and
high variability inthe performance and availability of hardware components but also by the expected
diversity of application characteristicthe multiplicity of different types of devices, and the large

latencies caused by deep memory subsystems. Against this backgraugéneval constraints on design
and operation of »tack runtime systems need to be highlighted: power/energy constraints and
application development cogthe first constraint establishes the objective festXck runtimes as

maximizing the achieved rataf performance to power/energy consumptiostead of raw performance
alone. The second constraint means thatack runtimes must focus on supporting the execution of the
same progranat all levels of the platform development chain, which is in lind wie basic criteria for
X-stack successédion 2).

The runtime system is the part of the software infrastructure where actual and more accurate information
is available about systerasources allocated to the application, its needs and potentialrpanice thus

11

this component has the potential to make béttrmed decisions on behalf of the application. To

achieve this goal, however, and successfully insulate application programmers from the complexities of
extreme scale platforms,-3tack runtimesvill have to incorporate much more intelligence than current
technologies support. The real challenge will be to use this added intelligfeeatively in the limited

timeframe that is typically available while the application riBeing in charge of #hactual execution of

the program, the runtime system is also a key component for resiliggiog in charge of the actual

execution of the program, the runtime system is also a key component for reshienegample, it

should detect and forecgsioblemsand provide basic mechanisms that enable the application to

"survive" faults and, subsequently, reallocate the potentially reduced set of resources so that performance
is still maximized.

4.1.2.2 Alternative R&D Strategies for Runtime Systems

Several diections can and should be tried in order to creastaXk runtimes that achieve the targeted
scale. The most obvious division of alternatives is in terms of degree of hienaachgly,a flat runtime

model €.g.,message passing) and a hierarchical m¢algl shared memory within a node and message
passing across nodes). In the latter case, the runtime hierarchy can have the same underlying model at
different levels or use different models at different levels. Flat and hierarchical alternativestatallyot
opposed in directigranda hybrid approach can certainly benefit from the flat approach pushing its
capabilities to the limits. Another set of alternatives to expoegeneralpurpose runtime systems, on

the one hand, and application type areaspecific (or customizable) runtime systems, capable of more
effectively exploiting platform resources relative to special sets of nertlse other.

4.1.2.3 Recommended Research Agenda for Runtime Systems

Challenging research topics inckibdeterogeneity, asynchrony, reduction of process management and
synchronization overheads, provision of shared naming/addressing spaces, optimization of
communication infrastructure, scheduling for parallel efficiency and memory efficiency, memory
managemet, and applicatiorspecific customizability. These topics can be groupsmifaur priority
research directions

I Heterogeneity:

0 Research challenge:-3tack runtime systems will have to work on several different
platforms, each of them heterogeneous, aiglwill certainly prove challenging. The
objective will be to optimize the applicationOs utilization of resources for best
power/performance by helping the application adapt to and exploit the level of granularity
supported by the underlying hardware.

0 Anticipated research directiom&nticipated research includesified/transparent accelerator
runtime models; exploitation of systems with heterogeneous (functionality/performance)
nodes and interconnects; scheduling for latency tolerance and bandwidthzaiimim and
adaptive selection of granularity. This type of research is also expected to be useful for
homogeneous multicores.

o0 Impact: Research in thareabroades the portability of programs, decoupling the
specification of the computations from dedaif the underlying hardware, thereby allowing
programmers to focus more exclusively on their science.

I Load balance

0 Research challenge: A key challenge is to adapt to the unavoidable variability in time and
space (processes/processors) of future apmitand systems. This will have to be done
with the objective of optimizing resource utilization and execution time.

12

0 Anticipated research directior@irections include gneralpurposeself-tuned runtimeshat
detect imbalance and reallocate resoufeas, cores, storage, DVFS, bandwidth) wittun
across processes and other entities at the different levels; virtualibased mechanisms to
support load balancing; minimization of the impact of temporary resource shortages, such as
those caused (affterent granularity levels) by OS noisendpartial job preemptions.

0 Impact:Research in thiareawill result in selftuned runtimes that will counteraet fine
granularity unforeseen variability in application load and availability and performahce
resources, thus reducing the frequency at which more expensive applieagbrebalancing
approaches will have to be used. Globally, this will significantly reduce the effort requested
of the programmers to achieve efficient resource utilizationemedre that the resources that
cannot be profitably used are returned to the system to be reallocated.

I Flat runtimes:

0 Researclkthallenge A major challenge is tocrease the scalability of existing and proposed
models with respect to the resources resplifior their implementation and the overheads they
incur. This includes the need to optimize the utilization thatiisentlyachieved of internal
resources such as adaptors and communication infrastructure. Also, typical practices today
where globally sgchronizing calls (barriers, collectives) represent big limitations at large
scale will have to be addressed.

0 Anticipatedresearch directia Research will be needed iptimization of resourceand
infrastructure for implemeirtg the runtime (e.g., mempused by messaggassing libraries,
overheads for process management and synchronization) and increased usage of prediction
techniques to accelerate the runtime, or at least introduction of high levels of asynchrony and
communication/computation overlaipe(, asynchronous MPI collectives, APGAS
approaches, datifow task based approaches)so needed will baierarchical
implementations of flat models (e.g., thread based MPI, optimization of collective operations)
andadapation ofcommunication subsystes to application characteristics (routing, mapping,
RDMA, etc.)

o0 Impact:Research in thiareawill result in increased scalability of basic models. Techniques
developed here will also be beneficial for the hierarchical approach. Globally, this wilblexte
the lifespan of existing codes and will help absorb the shock that the transition to exascale
represents.

I Hierarchical/hybrid runtimes :

0 Researclkthallenge A key challengas how to properly match the potentially different
semantics of the models atfeifent levels as well as to ensure that the scheduling decisions
taken at each of them have positey@mergy This matching between models must also
consider the actual matching of the execution to the underlying hardware structure and ensure
efficient utlization of the resources for any target machidee of the challenges that
motivates the hierarchical approachastraining the size of the name/address spaces (i.e
ranks, amount of shared state) while still providing a fair level of concyraerdflexibility
within each level

o0 Anticipatedresearch directionginticipated research includegperimentation on different
hierarchical integrations of runtimes to support models, such as MPI+other threading or task
based modeldhreading models+ackators MPI+threading+accelerators, MPI+PGAS, and
hierarchical tastbased models with very different task granularities at each leesiniques
to support encapsulation, modularity, and reuse; selection of appropriate number of entities

13

(processes/thesls) at each level in the hierarchy and the mapping to actual hardware
resourcesandautomatic memory placement, association, and affinity scheduling.

o Impact:Research in thiareawill result in effectively matching the execution to the available
resoures enabing smooth migration paths from todayOs flat codes

Timeframe Targets and MilestonesDRuntime Systems

Asynchrony/overlap: Demonstrate for both flat and hierarchical models 3x scalg
for strong scaling situations where efficiengguld otherwise be very low (i,e30%)
Why: Fighting variance is a lost battlezarn to live with it. Synchronous behavior i
extremely sensitive to variance and does not forgive communication delays

201011

Heterogeneity: Demonstrate ttihe Osame€bde can be run on different
heterogeneous systems.

Locality-aware scheduling: demonstrate that automatic locality aware schedulin
get a factor of 5xn highly NUMA memory architectures.

Why: By then, everybody will have experienced that rewritirgghme application
for every new platform is not a viable alternative. Machines will have deep,
noncoherent memory hierarchiesnd we have to demonstrate we know how to us
them.

201213

Optimizing runtime: generglurpose runtime automatically achievilogd balance,
optimized network usagand communication/computation overlap, miniatian of
memory consumption at large scale, maximization of performance to power rati
malleability,andtolerance to performance noise/interference on heterogeneous
systems.

Why: Complexity of systems will require automatic tuning support to optimize th
utilization of resources, which will not be feasible by static,gpecified schedules
and partitionings.

201415

Faulttolerant runtime: tolerating injectn rates of 10 errors per hoycooperating
with application provided information and recovery mechanisms for some)errory
Why: By then systems will have frequent failurasd it will be necessary to
anticipate and react to them in order that the applicatibwedguseful results.

201617

Fully decoupling runtime: dynamically handling all types of resources such as ¢
bandwidth, logical and physicalemory or storagé.e., controlling replication of
data, coherency and consistency, changes in the lagaubre appropriate for the
specific cores/accelerators).

Why: Underlyingsystem complexity and application complexity will have to be
matched in a very dynamic environment.

201819

4.1.2.4 Cross-Cutting Considerations
The runtime functionality interacts with all cresstting areas.

I Power management: The runtime will be responsible for measuring the application performance
and decithg the appropriate setups (frequency and voltage, duty cycles, etc.) for the knobs that
the underlying hardware will provide.

I PerformanceThe runtime will have to be instrumented to provide detailed information to
monitoring systems such that they can report appropriate measurements to upper levels of the

14

resource management infrastructure. (job scheduler) or to the user. The runtimd also need
monitoring information about the performance of the computational activity of the application to
select thamost appropriate resource for them ochmosethe appropriate power mode.

0 Resilience: The runtime will be responsible for implemansome finegrained mechanisms
(i.e, reissue failed taskpreservestate) as well afor decidng when to fire coarsgrained
mechanisms and the actual amount of state they should handle.

I Programmability: The runtime will have to implement the featneexled to support the various
programming models used on exascale systems

Global coordination between levels (architecture, runtime, compiler, job schedulers, etc.) is needed.
41.3 1/0 Systems
4.1.3.1 Technology and Science Drivers for I/O Systems

Technology and sciee drivers for I1/O systeniacludearchitectural alternatives for 1/0 systems, the
underlying application requirements or purpose for doing 1/O, I/O software stack, the expected
capabilities of the deviceandfault resiliency The data management (dissed in detail in the Scientific
Data Managemergection),life cycle, andits future usage and availability also influence how I/O system
software should be designed. Given the current state of I/O and storage systems in petascale systems,
incremental soltions in most aspects are unlikely to provide the required capabilities in exascale systems.
I/O architectures, when designed as separate and independent components from the compute
infrastructurehave alreadypeenshown not to be scalable as needed. ®hataditionally I/0O has been
considered as a separate actitiitatis performed before or after the main simulation or analysis
computation, or periodically for activities such as checkpointing, but still as separate overhead. This
mindset in designingrchitectures, softwarand applications must changetietrue potential of exascale
systems is to be exploited. I/O should be considered an integral activity to be optimized while architecting
the system and the underlying software. File systarhieh have mainly been adapted from the legacy
(sequential) file systemaith overly constraininggemanticsare not scalabléraditional interfaces in file
systems and storage systemiseven in some cases highevel data librariesare designed to handiiee
worstcase scenarios for conflicts, synchronizatamdcoherencendmostly ignoe the purpose of the

I/O by an application, which is an important source of information for scaling I/O performance when
millions of cores simultaneously access thedjGtem. Emerging storage devices such as-stdit

disks orSCMshave the potential to significantly alter the 1/O architectures, systems, perforraadce
software systemlhese emerging technologies also have significant potential to optimize power
consumption. Resiliency of an application under failures in an exascale system will depend significantly
on the 1/O systendé its capabilities, capacifyand performandé because saving the state of the system in
the form of checkpoints is likely to continue@se of the approaches.

4.1.3.2 Alternative R&D Strategies for I/O Systems

Many R&D strategies at different levels of the architecture and software stack can potentially address the
above technology drivers and for exascale syst@ims.metrics of I/O systems are performarcapacity,
scalability, adaptability of applications, programmaubility, fault resilieacyl support for entb-end data
integrity.

1. Delegation and Customization within I/O Middleware: The best place for optignézid scaling
I/0 is the middleware within user space becauseishahere most semantic data distribution,
data usageand accespatterninformationareavailable.The middleware is not only for the
singleuser spacgt also cooperaswith other usefile I/O activities on the machine so that
systemwide optimizationcanbe performedThe concept of delegation within I/O middleware
entails the use of a small fraction of the system on which the middleware exists and runs within

15

theuser space to perfortfO-relatedfunctions and optimizations on behalf of the applications.
Using the application requirements, it can perform intelligent and proactive caching, data
reorgarization, optimizationsandsmootling of 1/0O accesses from burst to smooth patteéFhs
approactcan provideservices to the application in such a way that the application can customize
the resourcegsedbased on its requiremenifhe delegation and customization approach also has
the opportunity to perform various functions on data while it is being produdegprocess

the databefore it is consumed. The availability of multicore nogies/idesthe opportunity to use
one ormore cores on each nade perform I/O servicedo use an exclusive set of select nodes,

and toprovide arange of customization options includitogality enhancements

Active Storage and Online Analysis: The concepaifve storage is based thre premise that

modern storage architectures might include usable processing resources at the storage nodes that
can be exploited for performing various important tasks including data analysis, organamadion,
redistribution This concept has significant gottial to improve performance and knowledge
discovery by exploiting the significant processing power within the caching and delegate nodes or
within the storage system. The potential usbathsignificanty more memory and GPGPl s

well asFPGA types baccelerators for data reformatting, subsetting, analgeis searching

make it even more attractive. However, the potential for developing these should be explored
within the runtime middleware (e,dVIPI-1O or higherlevel libraries) or at the file sgem layer.

These layers should be modified to provide appropriate interfaces to enable this capatitity
analytics can potentially reduce the need to store certain types of data if all the necessary
information and knowledge from this data can beveel while it is available.

Purposedriven 1/0O Software Layers: The traditioredmogeneous I/O interfacds not
explicitly exploit the purpose of an I/O operatighcheckpointing/O activity is different from
an 1/0 activity, whichstoresdatafor future analysisusing some other access pattern.ekampé
of the latter is theise of data in analyzing a subset of alga alongatime axis. (ptimizations
in the twoactivities may requirdifferent aproaches by the software layefie software layers
from file systems, middlewarand hidnershould be modifietby incorporaing these capabilities
andby exploiting the purpose of 1/0.

Software Systems for Integration of Emerging Storage Devitrasrging storage devices such
assolid-statedevices andtorageclassmemories (SCM) offer significant potentialo improve
performare, reduce power consumpti@ndimprove cachingsuch devices capotentially

reduceor eliminate explicit I/0 activitiesnd trafficon traditional disks if they are transpattgn
incorporated within the 1/0O software layers. Research and development of newer I/0O models and
different layers of software systeniuscluding file systermand middlewargis important for the
exploitation of these devices. Various approaches mustestigated along with the various
optionsfor using these devices the exascale architecture (e.g., an SCM device being part of
each nod& memory hierarchgr them being part of a separate section of the architecture that
have these devices). Thegstmshave implications in how various layers are designed and
optimized and should be topics for research and development. Furthermore, power optimization
approaches in software layers should be explored.

Extersion of Current File System&Efforts may be mde to extend current file systems to address

the parallelism and performance needed. However, given the current capabilities and performance
of these files systems, which are derived from conservative and reactive designs and with strict
sequential semarms, the chances of success of this approach are limited.

New Approach to Scalable Parallel File SysteResearch is needéor newer models,
interfacesand approachdhatare not limited by sequential semantics &mdconsistency
models that incorporatnewer and highly scalable metadata technicaredthat can exploit

16

information available from user and higher levatswell aghatcan incorporate newer storage
devices and hierarchies.

7. Incorporaton of /0O into Programming Models and Languagesportant research areas include
language features and programming model capabilitiedich users can use the programming
models and language to provide the 1/0O requirements, access patterigher highevel
information Ideally, it should be podde for compilers to use these enhanced madetptimize
I/O, pipeline 1/0, and intelligently schedule I/O to maximize overlap with other computations
Moreover, the modelshould be usablen multicore architecturesvhere theyan be exploitetb
utilize cores for enhancing 1/0O performanmedspecify online analysis functiors delegate
systems of active storage

8. Wide-Area I/O andntegration ofExternal Storage Systems: Scalable techniques are needed in
which parallelism in accessing storage deviséntegrated witlparallelismfor network
streaming. Alsomportant isintegrating parallel streaming of data over the network, using similar
principles as those in parallel 1/0.

4.1.3.3 Recommended Research Agenda for I/0O Systems

The recommended research agefodd/O systems is all items above except item 5.

Timeframe Targets and MilestoneDI/O Systems
I 1/O delegation concepts in various I/O software layers
201011 I New abstractions and approachegpdaallelfile systems

I Protocols for parallel data transfdos wide-area 1/0

I Initial I/O runtime and file systegfor SCM/SSD devices

I Developpurposedriven I/Osoftwarelayers

201213 I 1/O delegation optimizationgncluding analytics and dafarocessing
capabilities

I Programming language and model constructd/@integration

I Active storage alternatives in runtime and file systems
I Customizable I/O APIs and implementations

201415 I Tuned IO APl implementatioademonstrated withew memory hierarchy
components that include SCM

I Scalable tools with parallel I/@nd parallel streaming for wiekrea 1/0

I Newerprogrammingmodelsandlanguagesapabilities enabled for active
storage

I Fault resiliency and lowpower capabilities added in th® software layers

I Integration ofonline analysiswithin active storagearchitecture with new
storage devices (SCM)

I Protocol conversion capabilities for wideea 1/O

201617

I File systems and runtime software layersdiascale 1/0 optimized for new
storage devices

201819 I Powerperformance optimization capabilities in 180ftware layers

I Scalable software layers for wideea 1/O integrated with schedulers with
specialpurpose protocols for external networks

17

4.1.3.4 Cross-Cutting Considerations

Thearchitecture of the systems in geneaaldfor storage and I/O systems and theie wf emerging
devicesin particular will inf luence the 1/0 system softwarerchitectures should consider the issues
outlined above in designing I/O systems.-t&ated communication and storage device usélje
significantly influence power optimizatns. The 1/0 system software clearly has implicatfons
resiliency, the schedulers, the operating systamd programming models and languages

4.1.4 Systems Management

Systems management comprises a broad range of technicaMiesdivided theetopics irto five
categorieso be able to more tightly describe the challenges, research directions, and impact @)each
Qesource control and schedulj@which includes configuring, stawp, and reconfiguring the machine,
defining limits for resource capacity and quality, provisioning the resowandsyorkflow management
(2) Gecurity,Owhich includes athentication ad authorization, integrity of the system, data integetyd
detecion ofanomalous behavior and inappriate use(3) Ontegration and tegd whictinvolves
managing and maintaimg thehealth ofthe system and performing continuous diagnos(&sdogging,
reporting, and analyzing informatighwhere thedata consists of datic definition of maching{what
hardware exists and how it is connectéd@ dynamicstate of thenaching(what nodes are up, what jobs
are running, how much power is being us&i\S (Reliability, Availability, Serviceabilityevents
(warning or error conditions, alertgndsession loginformation (what jobs ran, how long, how much
resource they consumednd (5)Gexternal coordination of resourg@svhichis how the machine
coordinates with external componefasy.,how the HPC machine fits in a clguaindcomprises a
commoncommunication infrastructureeportingerrorsin a standardized wawpnd integrating within a
distributed computing environment.

4.1.4.1 Technology and Science Drivers for System Management

In addition to the fundamental drivers mentioned above (scale, component count failure rates, etc.) there
are additional technical challenges $gstemmanagementThe first challenge is the fact there is a Greal
timeO component to all system managenssiistwith the time periods rarigg from microseconds to

weeks Whether it is running the right task at the right tjmgetting the right data to the right place at the

right time getting an exascale system integrated and tested in a timely manregponding to

attempted security compromises, all system management tasks have to be resporesiascale

systemghe tasks also have to batomaic and proactive in order to stay within response limits

Another driver for exascale system managemetmaisthe limited resources that have been used in
system resource control and scheduling for thesgiglato petascald processors and computational
operation8l are no longer the most constrained resaub#eRPA studies listed in this report document
thatdaa movement, rather than computational processing, will be the constrained resource at exascale
This is especially true when power and enamptaken into account as limiting design and total cost of
ownership criteriaHence, resource control and maeagnN and the utilization logs for resouréés

haveto change focus to communications and data moveriedayy, most of the data movement
components of a system are shared and not scheelige most of the computation resources are
controlled and dedicatieto an applicationThat may not be the best solution going to exasbalewe do

not know

System management also has to ensure system integrity, a major factor of which is system security
(security is used here in the sense of epgstem cyber secty). Exascale systems will be so varied and
complex that in order to protect their correct operation, security features (such as authentication and
authorization, intrusion detection and preventamgdata integrity) will have to be built into the many
components of the systefihe Odefens@-depthO concepts that are successful for fagilithe security

will have to be extended throughout the exascale system without impinging on performance or function.

18

System complexity is another drivat exascaleHPC systems are exceedingly complex and susceptible
to small perturbations having extraordinary impact on performance, consisiaedaysability Taking the
number of transistors multiplidsy the number of lines of code simultaneously in use as a meafsure
complexity, exascale systems will feir orders of magnitude more complex than their petascale
predecessord he system managerOs job is to manage this comptegitgerto provide consistdrhigh
performance and quality of servid&ithout the remvention of many of the tools used today and the
invention of new tools, system managers will not be able to meet those expectations.

4.1.4.2 Alternative R&D Strategies for System Management

The obvious alternative is to take an evolutionary approach to exteledasgale and petascale system
management practices. This will result in significant inefficiencies in exascale systéended outages
and low effectiveness. As a metric, one can extend the Performability (Performance * Reliability)
measure to also ihale the effectiveness of resource allocation and consistency (PEREN the
evolutionary approach, it is likehatexascale systems will have a PERC metric within an order of
magnitude opetascaldecause of much less efficient resource managemet) less consistencgnd
much less reliability.

Another approach could lie import technical approaches from other domains such as the
telecommunications industrwhich provisions data movement and bandwidth as key resodncether
domain that has ¢lnology to offers reattime systems, which use control theory, statistical learning
techniquesand other methods to mandgrited resources a proactive manneAs a final example,

some cybesecurity intrusion detection technology also has potetatiaffer stateful, neareattime

analysis of activities and logBata mining and data analytics also have potential to offer point solutions
to managing large amounts of event data and identifying key factors that need to be addressed at high
levels.

4.1.4.3 Recommended Research Agenda for System Management

Herewe present representative list of research problems that will need to be addressed in order to
achieve the goals of exascale system management presented above

Category 1: OResource control and scheduling® and OExternal coordination of resourcesO
I Better characterize and manage nontraditional resources such as power and I/O bandwidth

I Determine how to manage and control communication resobqmesvision and control,
different for HPC tharfor WAN routing

I Determine and model retime aspects ofxascale system management and feedback for
resource control

I Develop techniques for dynamic provision under constant failure of components
I Coordinate resource discovery and schedulitg exascale resource management

The firstarea for research in Categoryslobtaining a better characterizatiomafttraditionalresources
such as power andO data motionRelated is research into how to control that data mo#ierpart of

% Estimates of todayOs vendopplied system software contain between 3 and 18 million lines of code. If one
assumes that each line of code generates 10 machine instructions, tBa8i3 Bdlion instructdons. Further

assume that OS functions use /8@ a second (and applications the rest)), there &8 tnillion instructions per

second in every node. TodayOs machines have 1,000 to 10,000 OS images, with some having closer to 100,000. A
simplistic compexity value might be considered as number of instructions * number of images. Today this is

6*10". At exascale, there may be 10,000,000 nodes. If the code complexity only doubles for exascale, the
complexity is 1.2*16, four orders of magnitude more cplex in the simplest case.

19

that stdy, the community needs to identify whether additional hardware enhancements should be
designedsuch asetwork switches that allow multiplexing streams by percentage utilizéignart, the
control will need to build on the results of the ability tatbecharacterize the data motion, hunhay

also proceed somewhat independeriyother research initiative that must be undertaken is determining
how to integrate the characterization and perform the control in realftheenost challenging piece of
research is determining how to keep the system running in the presence of constantSgsteas
management in the exascale timeframe ideally must be able to proactively determine failures and
reallocate resourcel a failure is not predetected, theseem management infrastructure must be able to
detect, isolate, and recover from the failure, by allocating additional equivalent resWVindeseffortis
underway in the application space to handle failures, system management research should target
presenting applicatiomwith machines where failures are corrected transparently by reallocating working
resources to replace the failed orldsreover, in ordeto integrate the HPC machine into a larger
infrastructure, research should be undertaken to geostandardized reporting of machine definitions and
capabilitiesthatexist in a globally scheduled environment.

Category 2 OSecurityO
I Provide fne-grained authentication and authorization by function/resources
I Provide gcurityverification forsoftwarebuilt from diverse components
! Provide appropriated®fense in depthO within systems without performance or scalability impact
I Develop securityffocused OS components instack
I Assess and improve ettd-end data integrity
I Determine guidelines and tradeofff security and openness (eggids)

For a system as complex as an exascale system, the risk of undetected compromise is too high to rely on
traditional security at the borders (login nodé#e-grainedauthentication and authorization by function

and for each resour@eneeded through all software and hardware components of the systisrhas

to be lightweight so as not to restrict or slow authorizecousienit scalability, while at the same time
comprehensivenoughto assure as complete protection as possiiile security model should be to

monitor and react rather than restract much as possihland to enable open, distributed ease of use

Because the system is expected to be built frorarde components, created by different communities,
security verification of software components will have to be done effigi€rhis will requirea meango
verify correct functioning, but the challenge will be to accommodate the scale and the dofarséyof
an exascale resource

Since other needs point to creating a novel HPC operating system, a critical feherersidered is
making a security focused OSThere may also be hardware assist features that can combingriimed
control andaccess managemeecurityrequiresintegrity, soendto-enddata integrity has to be
included.Moreover new analysis to provide the right balance between security and openness for
distributed computing (e.ggrid, web services) needs to be explored.

Category 3 Olntegration and testO and OLogging, reporting, and analyzing informationO
I Determine key elements fexascale monitoring
I Continue mining current and futupetascale failure data to detect patterns and improvements
I Determine methods for continus monitoring and testing without affecting system behavior

I Investigate improwng information filters; provide stateful filters for predicting potential incorrect
behavior

20

I Determine statistical and data models that accurately capture system behavior
I Determine proactive diagnostic and testing tools

The first research initiative that must be undertaken to reach the end goal of proactive failure detection is
determining thé&ey elementshat need to be monitorelliuch work has already occurred in thisa

Thus, determination of what will be required for exascale is needed, with potentially new items identified
Additional research must be encouraged in the field of mining failure data to determine patterns and
develop methodologies for doing.&ecawse the amount of collected data will be vast in the exascale era,
investigations for filters and statistical models must odecuboth cases, it is critical to significantly

reduce the volume while accurately capturing system behavior and not losicag exeéntsFor filtering,

there is a critical need to develsgateful techniques, where the dynamic state of the machine determines
what events the filter provideSechniques must be researched to allow this monitoring, filtering, and
analysis to occuin realtime withoutaffecting application behavior running on the systdimese

research initiatives need to feed researchroéctivdy determining where failures will occur by

monitoring and analyzing filtered data.

Timeframe Targets and Milestonesb Systems Managment

Category 1Creaton and validaibn of an analytic model and simulation capability
for exascale resource management that spans different implemestdtjobh and
resource management systems. Thsk will enable experimentatioof alternative

201011 designs that will accelerate implementation in the liteeframes.
Category 2Fine-grained authenticatidh being able to provide access to individug
or classes of resources to a single user or to groups of users.
Category 1Dynamic provisioning of traditional resourdédeing able to provide
201213 applications with more nodes and memonythe fly.

Category 3Unified framework for event collection: providing a commuratyreed
upon standard format for events across machines dsystems within a machine.

Category 1Expanddanalytic model and simulation capability ®tascale resource
management to includexternal coordinatioof services

Category 2Security validation of diverse componemisoviding a methodologfor
the different components in a system to ensure that security is maintained acro
201415 components.

Category 3)Model and filter for event analysissing the data produced by the
above unified framework to produce models representing the system for
understanding how different policies would impact the system, and providing filt
some of which should be stateful (dependent on the dynamic state of the mach

Category 1lntegrated nontraditional resources, such as bandwaitdpower: by
using the above models and filters, and the dynamic provisioning of resources,
providing the ability to manage new important resogregchaspower and data
201617 motion.

Category 3Continual monitoring and tesb thatpy building on the unified
framework forcollecting data and filters, reime monitoring and testing of the
machineare provided

Category 1Continual resource failure and dynamic reallocdliaising the above
proactive failure detection as input, and the above described dypemisioning of
traditional and nontraditional resourdegrovide the ability to keep the machine
running in the presence of continual failures by reallocating resources.

201819

21

Category 2Hardware support for full system securi@efense in depthO securigy
neededso that security does not redplelyon access control to the machirdso
needed islevelopment ofendto-end methodologies including integrated hardware
protect all components of the machine.

Category 3Proactive failure detectidhbuilding on the above continual monitoring
and analysis toolw provide the ability to predict failures.

4.1.4.4 Cross-Cutting Considerations

Systemmanagement functionality crosses all aspects of the vertical intediigpieriormance,
usability/programmability, resiliece, and power. System managentirectly impacts consistency and

total cost of ownership as welh addition, system management relies heavily on accumulating,

integrating and analyzing disparity data from all system components as well as all appkcatnting

to use the systerMultilevel analysis of system usage, subsystem actiyiied component and

subsystem health are needed to provide dynamic resource provision and to facilitate consistent and correct
execution of application tasks.

415 External Environments

The termexternal environment®fersto the essential interfaces to remote computational resources (e.g.
data repositories, retéime data streams, higherformance networks, and computing clouds) that
advanced applications may needtwess and utilize. The use of such resources is already typical for
many highend applicationsand they form a critical part of the working environment for most, if not all,
major research communities.

In the following, @istributed data repositori@are discussedT his discussiorcomplementshe views
presented in, for exampl8gction 4.3.3Application Support: Scientific Data Managementparticular,
while in Section 4.3.3 the main focus is on data management msdelsallenges in the data centéhis
sectiondiscusseslata management issues (idata access/integration) with regardexternaldata
repositorieqdata grids/clouds) and how the exascale roadmap can pave the way toward a transparent,
efficient, and integrated management of stifemdatabases distributed across data centers, data grids,
data cloudsand other external data repositori€sossreferences with other parts of this roadmap can be
identified in Section 4.3.2 (with special regard to metatools and new data analys&scéygg), Section

4.4 (crosscutting dimensions such as resilience, performaauee programmability)and Section 4.1.2

(I/0 systems with special regard to active storaggonline analysis as well as scalable file systems).

4.1.5.1 Technology and Science Driver s for External Environments

Exascalecyberinfrastructures will face important and critical challenges, both from computational and

data perspectives. Increasingly complex and parallel scientific codes will lead to the production of a huge
amount of data. For instance, climate chasgentists arexpected to generateindreds of exabytes of

data (distributed across several centers) through heterogeneous storage resources (located in data centers
as well as in external environmestsch aglata grids and data clouds) for access, analysi,

processingand other scientific activities. Collections of data will be stored at different sites and made
available to users for further analysis.

The large volume of data and the time needed to locate, access, amadyzesualizehis data will
grealy impact the scientific productivity. Significant improvements in the data management field
thereforewill be critical toincrease research productivity in solving complex scientific problems.

Since external environments will play an important role engbene, several challenges must be taken
into account irdevelopingthe exascale roadmap conteke first challenge at such large scale is to
provide efficient, scalable, resilient and transparent access to the external (with regard to the data center)

22

and distributed (from a geographical point of view) data repositories. Exascale applications will have to
efficiently manage and access data inside/outside the data center with a high level of performance and
through common interfaces able to decouplei€amiddleware layers from the application one. Data
centers willincreasingly needccess to external data repositories to take advantage of a wide set of data
collections. This should be made transparantl this transparencgpresents a key challengecausehe
heterogeneity of the data environments is expected to further incrag@alasctly connected with
technology evolution.

Since external environments will play an important role in the scegsgral challenges must be taken
into account irdevelopingthe exascale roadmap context.

The first challenge at such large scale is to provide efficient, scalable, resilidritansparent

access to the external (with regard to the data center) and distributed (from a geographical point
of view) datarepositories. Exascale applications will have to efficiently manage and access data
inside/outside the data center with a high level of performance and through common interfaces
able to decouple fabric/middleware layers from the application one. Datxs®iill increasingly
needaccess to external data repositories to take advantage of a wide set of data collections. This
should be made transpargand this transparencgpresents a key challengecausehe

heterogeneity of the data environments iseeted to further increase udslirectly connected

with technology evolution.

Related challenges that will become critical will be replication and distribution. At exascale, huge
data repositories will be replicated and distributed across severabsitesease data

availability, provide higher levels of fault tolerance and locality. For example, in the climate
change domain, the CMIP5 data repositories will be replicated abtm&mited Stateand

Europe and future scenarios will strongly rely ocaplication needs and schemas. Distribution and
replication are expected to be strongly exploited in the near ftndebecause othe sale and
evolution of future exayte systemghey represent a relevant challenge.

Considering thevide variety of exernal data repositories availalserldwide, uniform access in
terms of common interfaces will be fundamental. The wide set of interfaces to data services is
already a challeng&ecause othe largescale environment, the heterogeneity of the platfprms
and the complexity of the exascale system, interoperability will play an important role in making
highly feasible, transparergnd productive the interaction among all the involved components
and services available inside data centers, data grid envérdaanddata clouds.

Dataportals are today the entry points to vast data collections for several institutions, data
centersanddata cloudsln the exdyte era, stronger support and integration of scientific,
collaborative and social aspectgeexpeded in the context of negcientific gateways. Social
networking capabilities, poorly exploited today for scientific purposes, are strongly needed to
increase the level of discussions, feedback, exchange of scientific resdltissemination
among group. What is missing today isw-level and pervasive interoperability to enable data
repositoriesn data centers, data gridsd data cloud® be transparently accessed and easily
integrated in order to exploit new multidimensional and multidisciplinesgarctopportunities

Dataknowledgeand dscovery will play a critical role as the number of data collections and the
volume of data stored in distributed (heterogeneous) repositories belemges. A high number

of (heterogeneous) metadata/ontologiesrces (from different institutions/centeasg
anticipatedwhich describ¢he available data collections with regard to different domains.
Metadata provenance will increasingly become fundamentatderto identify, traceand

record the history oflataandthe related processing and analysis steps in such a multifaceted
environmentAutomatic metadata extraction needs to be improved to support the data publication

23

processatexascale data production rates. Semantic interoperability needs to lee adtlessed
to make data integration a reality.

I Openaccess will become the key for effective sharing of datqresentseveral restrictions and
access policies make real sharing and easy access to the available data callmoiticated
creatingseveral nonconnected (isolated) islands of data repositories. This problem must be
solved while taking into account that access and usage policies must be preserved as well. What
is missing is transparent and uniform management of such aspects acrossceeveries and
institutions.

4.1.5.2 Alternative R&D Strategies for External Environments

Access to data repositories in grid and cloud environnraigss numeroushallengesln mostcasesan
evolutionary approach seems adequate if we consider the status of existing middleware and technologies
and the production environments that have been built on top of them in several international initiatives in
Europe the United Stategsnd Japan. Qliously, the scale and the requirements ingka&byteera will

need a reengineering, extensiand improvement of several modules to make the integration feasible.

New efforts must be devoted to the intermediate layers (eiddleware) to have more eroperable,

robust and complete support to acceélseexternal data environmenrds exascale

Since access to data grids and data clouds is a key element for external environments, the design of
commorinterfaces (for middleware components) will be fuméatal. What is crucial is the coexistence

of standards and de facto standaddscientific and commercial actors, which makes more complex the
entirerealm Stronger effors in interoperabilityandstandardization need to be globally sustained with a
co-designapproactsupported by commercial and scientific partn&sch an approachill enable

effective access to a larger set of external data repositories and environments. Metadata standards,
domainbased ontologiesnd the associated standardizatmaldiscussion processes must be strongly
addressedSuch effortwill allow usto better describat exascaledata related to different scientific
domains througlawidely accepted, knowrand adopted set of information.

Metadata standardization will k& enabling process for effective access and sharing of data, since it
addresses search and discovery of data collections across different data sources. It is also a driving factor
for interoperability, obviously implying the need to develop new toofsyace, and services able to deal

with such a new standaad exascale

Also critical isfurther investigationinto new algorithms, protocols, replication schemas, placement
strategies, consistency protocols, lifetime issaaddynamic aspects. At thiayer, a standardized access
to the external data environments will be nee@dedess that can leeploited to decouple replication
aspects from the access ones.

4.1.5.3 Recommended Research Agenda for External Environments
Therecommendedesearch agenda focusmsthreeareas:
1. Access to external data repositories

I Stronger effortin data delivery mechanisms, parallel data transfer, compression algorithms,
efficient data protocols and data access services

I More pervasive use oew and higbr performance netwés

! Further activities orstandard interfaces that will provide a stronger level of interoperability
among different data repositoriésn effective collaboration and atesign between industrial
and scientific partners is recommended

24

I Further work to makéhe middlewarenore robustto transparently access heterogeneous data
environments in data centers, data gradwl data clouds

2. Replicationanddistributionof data
I Further investigation on new algorithms, protocols, replication scheandglacemet strategies,
which are crucially needed at such large scale

I Dynamic replication strategies based on historical information and usage patterns

I Stronger need to deal with several kinds of transient failiegg fietwork and storage failures)
providing efficient recovery procedures in case of faaltsl better addressing resilience

3. Scientific data gateways

I Collaborative, easyo-use, integrated, sociabsedeaturestailored on user access patterns and
levds that arehighly configurable

I Complex and distributed dataflow support

I Knowledge mininganddiscovery starting from advanced and integrated decision support
systems

I Ability to represent the virtual place where people can work togetteate communigis
exploit a wide set of toojJandanalyze, visualizeand compare data coming from data centers,
grids, or cloud environments.

In short, he roadmap fodistributed data repositori@sustmove towardextremelyintegrated,

interoperable, and interdisciplary data environmentsyhere the transparent integration of

heterogeneous data sources (inside and outside the data center) will allow, at exascale, a better and deeper
understanding of complex phenomena and problems.

Timeframe Targets and MilestoneDDistributed Data Repositories

Workshops focused on the main topics of the Research Agenda for distribute
repositories.

201011 Metadata management, harvesting capabilities, ontology manageneanidy
replica management, improved seaacildiscovery capabilities, standardization
activities on data services

Advanced web access and workflow capabilities for scientific data portals,
201213 federated data management, interoperability among data services, semantic (
integration services

Resilient services for distributed data repositories, advanced ontology managg
operational data gateways integrated, collaborative and comrunétyted,
stronger level of interoperability, new data analysis services, advanced suppo
2014-15 semantic and scalable search and discovery across distributed scientific datal
integrated (crosdomain) data platforms. Distributed, efficieand resilient data
mining support.

Operational interoperability related to heterogeneousaldated environments,
201617 production level data services, social collaborative virtual environmamds,
distributedknowledgebasedsystems.

25

Full data integration and interoperability among heterogeneous environment (|
centers, data grids, cloudsvenenments). Crosslomain, reatime, and interactive
201819 dataandknowledge discovery, access, processing, mining, anahysis
visualization.

4.1.5.4 Cross-Cutting Considerations
Four crosscutting considerations have been identified.

PerformanceEfficient access to external environments is cryaapecially if this step is part of complex
workflows that start/run inside the data centers and exploit external data sources to enrich their processing
and analysis. To have data grimclouds as pamf the system, higiperformance network connections

are strongly neededs well as higiperformance data transfer protocols.

ResilienceExternal environments relates to distributed environments daéa gridsarecharacterized

by manysoftware (i.e.services) and hardware (i.eouters, switches, storages) components.

Consequently there could be transient and permanent errors and issues everywhere in the global scenario
to be addressed at runtime. Making hardware and software components resilistiong challenge for

external data environments.

Scalability At such large scale the number of potential users and actihis milieu as well aghe

numberof data collectionswill be high. Thissituationimplies the need to have a scalable asziture

able to deal with a growing community and an increasing volume of data, without decreasing the level of
guality of service and efficiency.

Programmability The applications developers cannot be expected to maatagéow leveldistribution,
repication, loadbalancingand other issuesxplicitly in their codes. Complex aspects of distributed
services need to be available as Higyel APIs toallow end users to optimize their code, perform tuning
operationsand improve their applications.

4.2 Development Environments

The application development environment is the software that the user has to program, debug, and
optimize programdt includes programmingiodels frameworks, compilers, libraries, debuggers,
performance analysis tools, gradl exascale, probably fault tolerance

4.2.1 Programming Models
4.2.1.1 Technology and Science Drivers for Programming Models

Several challenges have been identified, and possible approaches for addressing these challenges have
been suggested.

I Exascale systems agesgpectedto have ehuge number of nodeEven within the node, much
parallelism will exist in many core architecta@ndacceleratas such as GPGPU. Programming
modek andlanguages should suppdnetuse of such huge levels of parallelism.

I Exascale systenmaay consist ofeveral kinds of componentscluding conventionamulticore
CPUs, manycore chipsand general and applicati@pecific accelerators, resulting in
heterogeneityProgramming modshndlanguages should allevidtee programmingdifficulti es
arisingfrom such heterogeneity.

I Exascale systemsill consist ofahuge number of componentshichwill increasehe failure
rate. Programming models can provide a way to handle such $aiithefault resilience
mechanisr.

26

I Memory bandwidthwill be importantin exascalesystems. Programming modalndlanguages
should provide models to exploit the dideality to make use of complex memdmigerarchies

I The programming model will need to address emerging argbony applications trends. For
example algorithms and applications are increasingly adaptiggascale computations will
perform massive amounts of I/O; the programming model will need to enable highest levels of
I/O performanceNew application domains may require new programming models.

I The use ofleep, large software stacksquire the capability to detect and isolate errors at various
stages (code development, production, compile time, runtime) and report them at an appropriate
level of abstraction.

4.2.1.2 Alternative R&D Strategies for Programming Models
Thefollowing strategiesre proposed

I Hybrid vs. uniform: A hybrid programming model is a practical way to progreasaale
systens thatmay havearchitectural heterogeneityniform programming modgprovide a
uniform view of the computation. They reduce the need for the application developer to be aware
of the details of the architectural complexity and are often considered to be more productive
Their provision is a challengbowever

I Evolutionaryvs.revolutionary @proachesSpecification of icremental improvements to the
existing moded is asafeapproach. Bvolutionary approaclsemay be attractive, but risky.

I Domain specific vs. generptogramming models: For sonapplicationarea, domainspecific
models may mvide performance and portability with higher productivity than general purpose
programming modelsffer.

I Widely embraced standards vs. single implementathiiste the latter hae the advantage of
rapid development and implementatitime formerarebased on the experience of a wider
community andareoften required by application groups.

4.2.1.3 Recommended Research Agenda for Programming Models

Research is needed into a variety of promising programming models for exascale computing, including
systemwide nmodels that provide a uniform approach to application development across an entire
platform, as well as hybrid programming models that combine two or more programming APIs. Such
models will need to provide a range of means for the expression of highdéeelscurrency and locality

and may be capable of supporting applicaspecific fault toleranceEnhancements to existing
programming interfaces as well as new programming approaches should be explored. For new models,
interoperability with existing HP@rogramming interfaces is highly desirable. Programming models that
facilitate productive application development are to be encouraged. Other desirable characteristics are
performance transparency and the ability to support incremental application migratio

Timeframe Targets and MilestonesDProgramming Models

Interoperability between established programming models for HPC (MPI, Open
201611 in particular)
Initial workshops to discuss potential exascale programming models

Faulttolerant MPI
Standard programming model for heterogeneous nodes

201213 . . .
Systemwide programming model(s) for petascale platforms available

27

201415 Candidate programming models for exascale systems defined
201617 Candidate programming models for exascale systempemented
201819 Exascale programming model(s) adopted

!
4.2.1.4 Cross-Cutting Considerations

Major characteristics of exascale architectures will have a significant impact on the nature of the
programming models that are designed to facilitate the creation of exiscazlapplications. Hence
major departures from the envisaged range of systehitectures may necessitate a rethinking of the
dominant features afnexascale programming model.

The programming model must facilitate efficient support for massive levels of 1/0 by applications and
must enable the application developer to write faware applications.

The implementation technology will need to be developed to realize the programming models that are
defined for exascale computing. The compiler translation will be critical and will need to be of
exceptional quality. The runtime systerllWwe expected to provide significant support to the compiler by
providing features for managing compute threads, implementing a variety of mechanisms for
synchronization, scheduling computations, supporting efforts to balance the workloadnegxecut
correctness checks that have been deferred to runtime, audipetrformance dat@and more.

Applications and libraries will be created using the programming models defined for exascale computing.
The programming model will be expected to provide a suffigi@nge of features to enable the

expression of their concurrency and locality and the orchestration of the actions of different threads across
the systemThe model alsonust facilitate the composition of different modules and library routines.

A variety of programmingmodetaware tools will be required to enable productive application
development, translatipand deployment. For instance, tools to support application development might
reduce the effort involved in identifying portions of code suitablefgcution on certain system
components. Tools for debugging will need to be created that are aware of the model®s semantics;
performance analysis and tuning tools will need to be created that reduce the effort involved in program
optimizationand areawae of the specific factors that influence program performance under a given
programming model. In additipnser annotations may need to be defined to support the actions of the
compilers and tools.

4.2.2 Frameworks
4.2.2.1 Technology and Science Drivers for Frameworks

Effective use of exascale systems will place many new demands on application design and
implementationLeft alone each application teamill face a daunting collection of infrastructure
requirements, independent of the science requiremerasimeworks (Wen properly developed) have
successfuy provideda common collection of interfaces, toasd capabilities that are reusable across a
setof related applicationdn particular, challenging computer science isSlegich areoftenorthogonal

to sciencedsuesl can be encapsulated and abstracted in a way that is easy for applicationsvttlese
still mairtaining or even improving performance.

A focused effort on frameworks for exascale systsnmeededor the following reasons

28

We have a large body ekisting scalable applications that we want to migrate toward exascale.
Many novelexascaleclass applicationare expected
Frameworks provide the best cost and time approach to application development.

Exascale computing provides a new opportunitynfioittiscale, multiphysicsand
multidisciplinary applications.

K K K K

4.2.2.2 Alternative R&D Strategies for Frameworks
Two R&D strategies are considered for frameworks.

No frameworks: Most successful frameworks agenstructedn response to substantial experience
develming individual componentsvhere hese components have substantial common requirements,
natural interoperability relationships, or botthis certainly possible to ignore the commonalities and
relationships and focus on eoéa-kind applicationsinitially this strategymay appear attractive because
it provides the shortest path to single application complefismore applications are developed,
however this strategyproduces redundant, incompatibded suboptimal software that is difficult to
maintan and upgrade, ultimately limiting the number of exascale applications, their gaatityheir

ability to be improved over their lifetime.

Clean-slate frameworks: If exascale systems eventually require a completely new programming model,
the approach wwill use to establish exascale frameworks will differ from the case where existing
applications are refactorebh this case, the framework will be best constructed to solve a minimally
interesting problemThen existing applications will be mined for theseful software fragment$his
strategywas required for many applications whaaking thetransition from vector multiprocessors to

MPI.

4.2.2.3 Recommended Research Agenda for Frameworks

Successful development of exaseel@ss frameworks will require a dete of effort Among the critical
research topics that must be addressed to achieve this goal are the following:

I Identificationand develoment ofcrosscuttingalgorithm and software technologieBor the
existing scalable application base and for new applications, there will be common requirements
for moving to exascale systenkor example, partitioning and lodmhlancing algorithms for
exascale systems andage of marrgore libraries are common needs.

I Refactoring for marygore: In anticipation of mamcore programming model decis®mwe must
still make progress in preparing for exascale systems by understanding the common requirements
of manycore programing that will be true regardless of the final choice in programming model

The table below, whiclyives the initial timeline for major activities and deliverabfesuses on the
following elements:

Workshops: The computational science and engineeringrooimities have many existing frameworks,
some multiinstitutional but most centered at a single institutids a result, the practices, topdad
capabilities of each framework vary greatly, as does the scope of visibility outside the host institution
The first priority for successful exascale framework development must be a series of warksleofirst
workshop will bringtogethempeople from existing framework efforts, developers of enabling
technologies (programming models, algorithms and librarées) application stakeholders who must
ultimately use and develop within the proposed frameworks to pedbalyses ofapabilities and gaps
Subsequent workshops will focus on specific R&D issues necessary for success

Breadth-first f rameworks: The nextmajor effort will be the development tfio to thredrameworks
one for libraries andneor two specific application domainélthough programming models, libraries

29

and faultresilient capabilities will probably not be mature, this initial bredulgh approach will faciliate
co-design of the framework with these enabling tools to ensure compatibHity effort will also focus
on mining capabilities from existing applications as appropaateell agprovide a first definition of the
common toolchain

Full-scope, additional frameworks:In subsequent years, the programming model, libraaied fault
resilient strategies should mature, allowing the initial frameworks to solidify these aspectdedigre
and implementatiorShortly after, or perhaps concurrently, several new dowsétific frameworks can
begin utilizing the design decisions and taxtilain established by the first frameworks.

Deployment: In the first years of exascale capabilities, all frameworks should be in a state to demonstrate
exascale capabilities on the first available exasclalgs systems.

Timeframe Targets and Milestones>- Frameworks

Workshops: 2010, 2011, regularly exft

* Bring together members from key existing framework efforts, algorithm/libr
developers, programming models.

* Workshop 1:
— Capabilitiesgaps analysis.
— First opportunities for muHinstitutional frameworks.
— Best practices from existing efforts.
— Commontool chain requirements.
— Possible wiawin scenarios.
* Workshop 2:
— Plan for programming model evaluations.
— Development oflibrary data model semantics.
* Workshop 3:
— Applicationsdriven resilience models.

201011

Develop firsttwo apgicationsand first library frameworks, 2013.
* Mining of components from existing capabilities.

201213 — Implemenation ofcommon tool chain, programming model, first
resilience harness, library interfaces.

* Breadthfirst approach.

Full developnent ofexascalespecific framework features:
* Mature frameworHlibrary data layout semantics.
* Fully capable fault resilience capabilities.
* Fully defined common toolchain.

201415

Developnent of two to threadditional appication frameworks, 2017.
201617 * Leveraging of infrastructure/design knowledge from first efforts.
» Developnent ofintercomponent coupling capabilities (e.g., data sharing).

Demonstrabn of full-scale application capabilities across all frameworkexascale

201819 system, 20109.

30

4.2.2.4 Cross-Cutting Considerations

Framework efforts will be greatlgffectedby evolving programming models, librariesd new
algorithm development, as well as fardsilient requirements and capabilitiddthough MPI will likely
be part of the picture, with a node programg model underneath, a radical new programming and
execution modeiaybe needed. In all cases, a framework will be important for rapidly deploying a
critical mass of application capabilities.

Ultimately, any frameworks we develop must have-tsufrom goplication development teams, those
domain scientists who are encoding the physics and engineering nwdhtsut their full supportour
frameworks will be irrelevantComputational domain scientists must be part of the framework
development process aseded to obtain this support.

Frameworks and the libraries they provide must be part of the software stack for petascale, trans
petascaleand exascale systen&his approachs essential for providing application developers with a
common software environamt at several scales of computing.

4.2.3 Compilers
4.2.3.1 Technology and Science Drivers for Compilers

Compilers will be a critical component of exascale software solutions. Not only will they be required to
implement new and enhanced programming models agererate object code with exceptional quality,
but they will also need to support the process of program adaptation,, taméhdebugging. The high
number of potentially simpler (inrder) cores and the existence of specialized components will increase
the importance of the compiler.

Compilers for uniform programming models that span entire systems will need to manage the distribution
of data, locality of computatigand orchestration of communication and computation in such a manner
that all componentsf the machine perform useful computations. With substantial support from the
runtime library, they may also be required to batésthe workload across the system components.

Compilers for node programming models may be required to generate code that runs across a large
collection of generapurpose cores or across a hode that may be configured with gpagrase cores

along with o or more specialized accelerators.

Memory hierarchies will be highly complex; memory will be distributed across the nodes of exascale
systems and will be NUMA within the individual nodes, with many levels of cache and possibly
scratchpad memory. Compitewill be expected to generate code that exhibits high levels of locality in
order to minimize the cost of memory acces§ammpilers alsomay need to explicitly manage the
transfer of data between different subcomponents within nodes.

4.2.3.2 Alternative R&D Strategies for Compilers

The alternative R&D strategies describedgmgrammingmodelsapply equally to compilers, since they
provide a major part of the implementation of the programming models. By ensuring interoperability
between different languages gmigramming models, compilers can be key to mitigating the risk

involved in selecting an emerging programming model and may increase the adoption of new models by
offering an incremental path from existing or proposed models §Rj, OpenMP, UPC, X10Chapel).

4.2.3.3 Recommended Research Agenda for Compilers

Advances in compiler technology are key to the provision of programming models that offer both
performance and productivity characteristiEse following topics should be pursued:

31

Techniques for the tratation ofnewexascale programming models dadguagesupporting
high productivity and performance, hybrid programming mqaeld programming models that
span heterogeneous systems.

Powerful optimization frameworksmplementing parallel program anags andew,
architectureawareoptimizations, including powewill be key to the efficient translation of
exascale programs. Improved strategies for automatic parallelization are needed, as are
techniques for determining regions of code that may beldaitar specific hardware
components.

Experimentation with new optimizations aadline feedbactbasedptimizations benefiing
from recent experiences with justtime compilation Other topics include generation of
multiple code versionsnore aggresse, speculative optimizationsndincorporaion of
lightweight strategies for modifying code on the fly.

Support ofstrategies for enabling fault toleran€®r examplecompilersmay be able to help
reduce the amount of data involved in checkpointing.

Standard interfaces facilitatingtieractions betweethe compiler andhedevelgpment and

execution environment. Such interfaces could enable tools or application developers to drive the
translation process in new ways and enable the compiler to driaetibas of tools during

runtime, for example to gather specific kinds of performance data. Compilers should be capable
of automatically instrumenting code.

Compilerbased tool$or application development. Such tools cosilghport the application
developnent process, help interpret the impact of the compilerOs translation on the applicationOs
runtime behavior, and explain how the application developer might improve the results of this
translation.

Innovative technigues. Compilers may be able to benefit fototuningmay incorporate
methoddor learning from prior experiencemay exploit knowledge bsuitable optimization
strategies that is gained from the development and execution environmentsyeaqbly novel
techniques that complement traditional translation strategies.

Timeframe Targets and Milestones- Compilers

201011 Initial interface specified to enable compilers to interact wétormance and

MPIl-aware compilers supporting MPI implementations.

runtime correctnesshecking tools.

201213 Compiler support for hybrid programming models

Standard heterogeneous programming model implemented

201415
Systemwide highlevel programming model implemented
Exascale programmingodel implemented

201617 Standard interfaces for interactions between compilers and other tools in
development and execution environment

201819 Refinement ofarchitecture awareness

Compilers that interact smoothly with performance and runtime tools

32

4.2.3.4 Cross-Cutting Considerations

Compilers must no longer be viewed as a black box but rather as open translation infrastructures that must
be capable of interoperating with all elements of the dewedmt and execution environment, especially
the runtime system artdols.

The runtime system will be expected to provide significant support to the compiler by providing a number
of features for managing compute threads, implementing a variety of mechanisms for synchronization,
scheduling tasks and other computations, supporting efforts to balance the workload.

Compilers need to generate efficient code for the target architecture. Therefore they need to be developed
in an architectur@aware manner. The use of explicit cost models may simplify the generation of code for
different hardware configurations.

4.2.4 Numerica | Libraries
4.2.4.1 Technology and Science Drivers for Libraries

Numerical libraries underpin any science application developed forgeifbrmance computing and

offer the potential to exploit the underlying computer systems without the application developer
necessarily understanding the architectural details. Hence, science drivers are more or less automatically
built in. However, we may expect new applications to emerge with exascale syastehtibraries should

adapt accordingly.

The technology drivers forldrary development include hybrid architectures, programming models,
accuracy, fault detection, energy budget, memory hierarchy and the relevant stavdianeiscal

libraries dependn the formation of various standards that will be neededdoare the wdespread
deployment of the software componentde libraries will be equally dependent on the operating system
andthe computer architecture features and how Hregommunicated to the library level.

4.2.4.2 Alternative R&D Strategies for Libraries

Thealtermtive research and develmgntstrategies for libraries will be driven by the operating system
and software environment provided on given architecti¥kkescan assume that wall see models such
as messagpassing libraries, global address space langyagelsmessageriven work queuesSinceall
three model$ikely will occur at some level in future systems, matching implementations need to be
developed concurrently. In particuléne three programming modedhould be interoperable to permit
the widestdeployment.

4.2.4.3 Recommended Research Agenda for Libraries

Existing numerical libraries will need to be rewritten and extended in light of the emerging architectural
changesThe technology drivers will necessitate the redesign of the existing libraries lhfat e re
engineering and implementation of new algorithBecause ofthe enhanced levels of concurrency on
future systemsalgorithms will need to embrace asynchrony to generate the number of required
independent operations

The research agenda wiked to includehe following

1. Hybrid and hierarchical based softwagéficient implementations need to be aware of the
underlying platform and memory hierarchy for optimal deployment.

2. Autotuning: Libraries need to have the ability to adapt to the pgdsdierogeneous
environment in which they have to operate.

3. Faultoblivious and errotolerant implementations: The libraries need to be resiight
regard tahe increased rate of faults in the data being processed.

33

Mixed arithmetic for performance amthergy savingThe libraries must be able tmdl optimal
mapping of required precision in terms of speed, precision, and energy usage.

Architecturataware algorithms that adapt to the underlying architectural characteristics: The
libraries must be able to act givenarchitectural information to select or generate optimal
instantiations of library routines.

Energyefficient implementations to optimizbe energy envelope for a given implementation:
The libraries should have the ability to take the total power usage into account and optimize for
this parameter.

Algorithms for minimizing communication§Such algorithms are essential because
communicatios play such an important role in performance and scalability.

Algorithms for sharednemory architecture§ hese algorithmhavelong beena staplebut
theywill have a prominent role on future exascale systems as a way to mitigate the impact of
increasedteration counts in Schwaitype algorithms.

Fusion of library routine implementationsibraries often introduce artificial separations into
the code, based on the function of each roufieehniques that permit the fusiohsuch
routines (e.g.of theloops in two consecutive library calls) will be needed.

Timeframe Targets and MilestonesDNumerical Libraries

201012 2011: Milestone: Heterogeneous software libraries

Standards for hybrid (heterogeneous) computing are needed immediately.

2012:Milestone: Language issuaddressed

Standards requirefdr architecturalcharacteristics.

201214 . _
2013: Milestone: Architectural transparency
2015: Milestone: Seladapting for performance
201416 _
Standards required for energy awaess
2016:Milestone: Energyawaraness
201617 .
Standard for fault tolerance required
2018 Milestone: Fault tolerance
201819

2019: Mlestone: Scaling to billion way

4.2.4.4 Cross -Cutting Considerations

Libraries will require standards to build on. These will include standards for power management,
architectural characteristics, programming for heterogeneous environments and fault tolerance.

Establishing such standardeesupposes that the informationaedjng the underlying architecture,

energy usagend so forthwill be available as parameters to be used within the library implementations.

The libraries need to provide language bindings for existing as well as newly emerging langju#uges
same tine,the calling sequences for their routines should fit in with the various programming models

available for exascale environments.

34

4.2.5 Debugging
4.2.5.1 Technology Drivers for Debugging

Historically debugging has meant the process by which errors in program catigcarered and

addressed. The scale of modern parallel computers has pushed the boundaries of that definition in two
ways. Massive concurrency at tecaleand petascale has led to profound challenges in the ability of a
software debugger to encompassehére parallel application consisting of thousands of processes.
Additionally, it hasinitiatedthe need to debug not just the code but machine and OS environments where
bugs and contention outside the program code itself may be the underlying caudts afefen at the
application layer.

With exascale computingve formally broaden the scope of debugging to including finding problems in

the execution of program code by identifying and addressing application incorrectness as well as
application failureand critical application performance bottlenecks that may be either reproducible or
transient. These faults and bottlenecks may have their origins in the code itself or may be consequences of
hardware or software conditions outside the control of the @gijah. As a exampleandevident already

at the petascale, a failed switch adapter on a remote node may cause failures in other jobs or may bring
communication to a near standstill. For bulk synchronous parallel codes it normally takes only one slow
taskto limit the overall performance of the code

Thefollowing aspects of exascale technology will drive decisions in debugging
I Concurrencydriven overhead idebugging
I Scalability of debugger methodologies (data and interfaces)
I Concurrency scaling of the frequencyexternalerrors/failures
I Heterogeneity and lightweigbiperating systems

These technology drivers are specific instances of the more broadly stated technology trends in exascale
of concurrency, resiliency, and heigeneity within a node. If ignoredebuggingat exascalavill

become more and mocestly, increasing thbuman effort applied to debuggiagddiminishing the

investment in HPC resources by requiring more machine hours to be devoted to costly dédmsg sess
Theresearch strategy for exascale debuggiimgefore musaim to streamline the debugging process by
making it more scalable and more reliable.

4.2.5.2 Alternative R&D Strategies for Debugging

Exascale is a regime in which the rate of hardware faultaweike debugging, in the expanded context
mentioned above, a persistently neededies activity. We therefore suggest a strategy that Oplans to
debugO at compile time and also addresses the data management problems presented by dramatically
higher conctrencies. The utility in debugging in a separate session will be limited since a large class of
bugs may not be reproducible. Exascale will require the ability to Odebug without s©OBpaigbility in
debugging has been addressed in previous generafitti3C systermm Research to advance the state of

the art in scalability will be required.

Instead of pursuing the development of debuggers as monolithic applications capable of running other
user applications in a debug environment, we propose reseatacteaelopmento improve the

information sources from which a variety of debugging frameworks can benefistidtisgyborrows a
lesson learned in the performance tools commumwitych has largely moved away from each tool having
its own means of dering machine function (reading counters, registers, etc.) toward development of
robust APIghatdeliver that information in a portable manner. For example, PAPI provides a common
interface for performance information upon which performance tools may lbe bui

35

To build such scalable and reliable sources of information for debugginguggest vertical integration

with compiler, library, runtime, O%&nd 1/O layers. This integration achieves two important gatdlhe

same timeFirst, it expands the persgiese into the application from multiple directions by providing

multiple layers or contexts in which to debug. Specific aspects of codes such as just communication, I/O,
specific libraries, or even usdefined quantities or data structures will allow debugging process to

zero in on the anomaly or fault in question. Composition of these data sources will allow fer cross
checking and hypothesis testing as to the origin of a fault or bottleneck. This comittashe idea of

using a debugger to stepdligh executing code on an instruction or subroutines basis and moves in the
direction ofhavingthe debugging framewotkecomeadvisory and participatory in the productiand

execution of codes.

Second, vertical integration that delivers portable statsdf@r gathering and acting on debug information
provides efficiency in the design and maintenance of debugging tools. Instead of devatmriddo-

end solution within each debuggere imagine a lowered barrier to entry to the design of special pyrpose
custonmifitted debuggershatdraw on reliable, scalable, and portable mechanisms for monitoring and
controlling application codes. Moving from a esigefits-all perspective on debggqg to modularly
selectable approaches will enhance the ability for applicatoinsorporate the handling of faults and
problem scenarios internally. Currentiylarge mismatckxistsbetween what the layers underlying the
application tell the appliceon about faults and what the application needs to know.

4.2.5.3 Recommended Research Agenda for Debugging

Debugging technology needs to grow away frmwnolithicapplications toward runtime libraries and
layers that detect problems and aggregate highly comtudedugging information into a categorical
rather than task based contéXtrsuing this pathaises a varietpf research challengeghosesolution
will be critical to finding a successful approach to debugging at exascale:

I Methods for scalable clustegrof application process/thread staddany millions of synopses
can be made understandable by clustering into types or categories. Debuggers will need to have
the ability to search through this volume of data to findQreedle in the haysta®kn orde to
speed root cause determination

I Debugging without stopping (resilient analysis of victim procéBeSupport for debugging will
be needed in cases where one node hasaleldOS and runtime methods are able to migrate
and/or reschedule failed taskkeeping the application alive. Debuggers will need interoperability
with system and runtime fault tolerance technologies.

I Vertical integration of debug and performance information across software #ayevil be
necessary to find ways to move debung into multiple levels of application development, build,
and execution in order to get a fuller picture of application problems. Consistent standards in the
design of these interfaces will be needed to make debuggers and tools more psntadleas
easer to develop and maintain

I Layered contexts or modes of debuggilgstead of a onsizefits-all approach, developers will
need to be able to select custom levels of debug in order to connect the dots between potential
bugs and their causes. OAR hata all the timeO will not be an optionftdi-scaleexascale
debugging. Intelligent selection from a menu of reliable data sources will have to betabdet
the specifics of a potential bug

I Automatically triggered debuggirfginstead of debuging test cases in a separate session, some
exascale debugging must be delivered as problems ukfséds will have to be abte advise
the application about objectives from which deviation is considered a bug. Agietpug
framework wih these capabiliis would enablapplicationgo advise the user aboprtoblem

36

indicators for example expanding memory footprint, incorrectneasd sudderchanges in
performance.

By focusing on the ability of debugging frameworks to scale and communicatehisetigenda will
lower the barriers to debugging, lower the human and machine costs of debugging, and enhance the trust
in the reliability of scientific output from exascale systems.

Timeframe Targets and Milestones®Debugging Tools
201011 Eilgr?tr\]/:/r;?;r?tddgssgﬁzz le5 cores
201213 Support forheterogeneityn nodes
201415 Simulationat 10° cores
201617 Software development to support 1e6 core production dghgg
201819 Nearproduction exascale

4.3 Applications

While IESP may not focus on developing applications per se, theyeaegthelesthe reason for the
existence of such systenismay be that exascale systems are specialized machinéssigmed with
specific families of applications in min@herefore [IESP needs to invest in the technology that makes
these applications feasible.

4.3.1 Application Element: Algorithms
4.3.1.1 Technology and Science Drivers for Algorithms

Algorithms must be developed to deal with the architectural realitieséraamcale systenin adlition,
algorithmic innovation can provide efficient alternatives to computer hardware, addressing issues such as
reliability and power.

Scalability is perhaps the most obvious driver for algoritibmmtributing to scalability are problems in
corcurrency latency, and load balancinBecause aexascalesystem will havel0° to 10° threads, simply
creating enough concurrency from an application can become a challet@f®{aesh has one point per
thread on such a system; the low computation/communicegtanof such a problem is typically
inefficient). Even current systems haad 0°BL0’cycle hardware latency in accessing remote memory
Hiding this latency requires algorithms that achieve a computation/communication overlap of¥'least
cycles;exascale systems are likely to require a similar degree of latency hiding (because the ratio of
processor and memory speeds are expected to remain about theMsanysjurrent algorithms have
synchronization points (such as dot products/allreduce) thatdpportunities for latency hiding(g.,
Krylov methods for solving sparse linear systeriiglese synchronization points must be eliminated
Moreover static load balancing rarely provides an exact load balance; experience with tenascdle

and neaipetascale systems suggests that this is already a major scalability problem for many algorithms.

Fault tolerance and fault resilienapsalsodrivers for algorithms While hardware and system software
solutions to managing faults are possible, it maynbee efficient for the algorithm to contribute to

solving the fault resilience problerixperience shows applications may not detect faults (which may also
be missed by the hardware); we need to evathateole of algorithms in detecting faultSetectng

faults in hardware requires additional powwedmemory. Regardless of wdh componentietects a fault,
must be repaired’he current genergdurpose solutions (e.g., checkpoint/restart) are already demanding

37

on highend platforms (e.g., requiring sificant 1/O bandwidth)We need to evaluateerole of

algorithms in repairing faults, particularly transient (e.g., memory upset) faults. In additéoraron

imagine a new class of algorithms that are inherently-taidtant, such as those that corge

stochastically. The advantage of robustness on exascale platforms will eventually override concerns over
computational efficiency.

Because of the likely complexity of aascale system, algorithms must be developed that are a good
match to the availdé hardwareOne of the most challenging demands is power; algorithms that
minimize power use need to be develapgus will require performance models that include energy.

Note that this may be combined with other constraints, since data motion comnerggsAs many
proposals foexascale systems (and powefficient petascale systems) exploit heterogeneous processors,
algorithms will need to be developed that can make use of these processor structures. The current
experience with GPGPU systems, whilemising for some algorithms, has not shown benefits with

other algorithmsHeterogeneous systems also require different strategies for use of memory and
functional units. For example, on some hardware it may be advantageous for algorithms to exploit
multiple levels of precisiorExascale systems are likely to have orders of magnitude less memory per
core than current systems (though still large amounts of memory). Power constraints may reduce the
amount of fast memory availabkedding totheneed for lagéncy hiding Thus we need algorithms that use
memory more efficiently, for example, more accuracy per,ligteer data moves per result. The choice

of algorithm for a particular application may depend sensitively on details of the memory hierarchy and
implementationportability between diverse architectures will require algorithms that can automatically
adjust to local hardware constraints.

The final driver is this need to-examine the classes of applications that are suitabkxémcale

computing Becausexascale systems are likely to be differfotm simple extrapolations of petascale
systems, some application areas may become suitable again; others (because of the extreme scale and
degree of concurrency) may become possible for the first time.

A major concern is that aaxascale system may be very different from current systems and will require
new approaches.

4.3.1.2 Alternative R&D Strategies for Algorithms

All strategies for developing algorithms ferascale systems must start with several Ostravexascale
architecturesO that are described in enough detail to permit the evaluation of the suitability of current
algorithms on potentiaxascale system3here are then two basic strategies:réfine existing

algorithms to expose more concurrenajat to heterogeneous architectures, and manage faults and (2)
develop new algorithms

In refining algorithms, a number of strategies may be apgliedeloping new algorithms requires
rethinking the entire application approach, starting with the chdineathematical model and
approximation methods usdtlis also important to revaluate existing methods, such as the use of
Monte Carlg reconsider tradeoffs between implicit and explicit methadsd replace FFT with other
approaches that can avoid #ieto-all communicationln creating algorithms that are fault tolerant, a

key approach is to use or create redundant information in the algorithm or mathematicalmaousshe
effective use of likelyexascale hardware, methods that make more efficembfimemory, such as
higherorder methods, as well as the development of more predictive analytic performance models, will
be key.

4.3.1.3 Recommended Research Agenda for Algorithms

A research agenda is shown in the table below, along with comments providindetalabout each in
the enumerated list beloWot captured in this table is the need to follow two broad strategies: an
evolutionary one that updates current algorithmsefasscale (following the approaches that have

38

successfully been followed to takie to petascale) and one that invests in higher risk but higher payoff
development of new algorithmim either case, it is important to develop performance models (and thus
strawmarexascale architecture designs) against which algorithm developments eaalbatedin

addition, it is all too easy for applications to define algorithm OrequirementsO that overly constrain the
possible solutiondt is important to reevaluate application needs, for example, evaluating changes to the
modelor approximationa allowtheuse ofexascaleappropriate algorithms.

Against this background, the critical research challenges that need to be addressed for application
algorithms that build on the-Xtack are as follows

I Gap analysi®need to perform a detailed analysfghe applications, particularly with respect to
guantitative models of performancedastalability

I Scalability, particularly relaxing synchronization constraints
I Fault tolerance and resilience, including fault detection and recovery

I Heterogeneous systemslgorithms that are suitable for systems made of functional units with
very different abilities

Timeframe Targets and MilestonesbAlgorithms

Gap analysisNeeds to be completed early to guide the rest of the ef|

Evaluation of algrithms needed for applicatiarideeds to be initiated early an
201011 completed early to guide allocation of effort and to identify areas where apy
need to rethinkheapproach (crossutting issue)Needs to develop and use
more realistic moels of computation (quantify need)

Algorithms for intranode scaling
Algorithms for internode scaling
201213 Evaluation on petascale systems

Better scaling in node count and within nodes can be performed using peta
systems in thiFimeframe(so it makes sense to deliver a first pass in this
Timeframg.

Prototype algorithms for heterogeneous systems

Heterogeneous systems are available now but require both programming n
201415 and algorithmic innovation; while some work has already lieere, others may
require more timeThis can be vieweds Oa significant fraction of algorithms
required for applications expected to rureescale have effective algorithms
for heterogeneous processor syst€ins

Fault resilience

201617 Fault resiliencés a hard problem; this assumes that work starts now‘but will
take this long to meet the same definition as for heterogeneous sy3@@ams
significant fraction of algorithms have fault resilier@e

39

Efficient realizations of algorithms @axascalearchitectures

Efficient implementation includes the realization in exascale programming
models and tuning for real systems, which may involve algorithm modificati
201819 (since the real architecture will most likely be different from the models use(
earlier developmentshn addition, the choice of data structures may also chal
depending on the abilities of compilers and runtimes to provide efficient
execution of the algorithms.

43.1.4 Cross -Cutting Considerations

The ability to design and implement effnt and novel algorithms for exascale architectures will be
closely tied to improvements in mangosscuttingareas. Examples includiee following

The development of libraries that recognize and exploit the presence of mixed precision matherhatics wil
spur the creation of algorithms that effectively utilize heterogeneous hardware. Ideally, the user could
specify the required precision for the resattd the algorithm would choose the best combination of
precision on the local hardware in order toiaeh it. The actual mechanics would be hidden from the

user.

The creation of debugging tools that expose cache use, load imbalance, or local power utilization will be
critical for the implementation of seffptimizing algorithms in each of these areas.réntty available

methods of debugging larggeale codes to catctor example loadbalanéng issues are manpower

intensive and represent a significant barrier to the development of efficient algorithms.

Runtime systems that make available to the runnialg énformation about MTBF on the hardware can
allow for auteadjustment of defensive restart strategies. The I/O strategy for even a petascale simulation
must be carefully optimized to avoid wasting both compute and storage resources. The situatidy will o
be more criticaht exascale

Tuning of algorithms for performance optimization will benefit from compilers and programming
languages that can recognize and utilize multiple levels of parallelism present in the hardware. Current
strategies for optimizeon on HPC architectures result in either @ig handtuned codes or portable and
inefficient codes, since it is difficult to express multiple possible levels of parallelism into the structure of
the code. The increased portability allowed by some measgautotuning will maximize the ROI on

code development and thus lower the effective cost of entry into HPC.

4.3.2 Application Support: Data Analysis and Visualization
4.3.2.1 Technology and Science Drivers for Data Analysis and Visualization

Modern scientific instrments\ for examplejn synchrotron science, high energy physics, astron@mg,
biotechnologi are all experiencing exponential growth in data generation rates through a combination of
improved sensors, increases in scale, widespread availahildyrapidadvances in the supporting

information technology. Model simulatioRor examplein climate, CFD, materials scienand

biological sciencH are also producing vast amounts of data as they scale with the exponential growth in
HPC performance. Experimentadience, modelingand simulation are routinely generating petabyte

scale data sets. Exabydeale data sets are now part of the planning process for major scientific projects.

The increasing scale and complexity of simulations and the data they produce will be a key driver of the
research agenda in the area of data analysis and visualization. These will force new approaches to
coupling analysis and visualization computationthlarger datasets. Considerations of dataset size will
also drive innovations in analysis techniques, allowing for the advancement of current teclanology
requiring the research and development of new solutions. Analysis and visualization will img limit

factors in gaining insight from exascale data.

40

Interactive data exploration will also become increasingly important as dataset scale and complexity
continue to growHowever, it will become increasingly difficult to work interactively with these d&tase
thus requiring new methods and technologies. These solutions will need to supply the scientist with

salient reductions of the raw data and new methods for information and process tracking.

4.3.2.2 Alternative R&D Strategies for Data Analysis and Visualization

Several strategies for enabling data analysis and visualization at exascale are available to us. One strategy
would be to continue to incrementally improve and adapt existing technologies (visualization and analysis
algorithms, data management schemessterehd resource allocation). Thasliabatic expansioof

current efforts is well traveled and has a lower barrier to entry than otheitsiriayt not provide

adequate solutions in the long run.

Inevitably, some combination of existing technologies aralitiiegration of the four approaches
described next will serve important roles in the necessary R&D enterprise.

I New algorithmsblt would make sense to pursue development of entirely new algorithms that fit
well with new large and complex architecturesisTdpproach will be increasingly difficult,
owing to the need to explicitly account for larger pools of heterogeneous resources.

I New data analysis approache®New mathematical and statisti@gdproachemust be identified
for analysis of exabyte data set

I Integrated adaptive techniquesbDevelopment ofntegrated adaptive techniques vetiable on
the fly and learned pattern performance optimization from fine to coarse grain. This strategy
would provide a range of means to extract meaningful performarmmevements implicitly,
rather than by explicit modeling of increasingly complex systems.

I Pro-active software methodAnother strategy is to expand the role of supporting visualization
environments to include more paztive softwaremodel and goalaware agents, estimated and
fuzzy results, and advanced feature identification. This strategy will require abdicating some
responsibility to autonomous system software in order to more rapidly sift through large amounts
of data in search of hidden elementsliscovery and understanding.

I Metatools DWith a focus on mitigating the increasing burden of Higlel organization of the
exploration and discovery process, it would be advantageous to invest in methods and tools for
keeping track of the processes gmdducts of exploration and discovery. These will include aids
to process navigation, hypothesis tracking, workflows, provenance tracking, and advanced
collaboration and sharing tools.

I Collaboration BDeployment ofa global system of largecale high-resolution (100 Mpixel)
visualization and data analysis systems based onspece architectusawill link universities
and research laboratoriand facilitate collaborations.

4.3.2.3 Recommended Research Agenda for Data Analysis and Visualization

Many of the hnovations required to cope with exascale data analysis and visualization tasks will require
considerable development and integration in order to become useful. At the same time, most would be of
considerable utility athe petascale. Consequently, it istronly required but could provide dpnt

benefits to aggressively develop the proposed methods so that they can be deployed early, at least in
prototype form, for extensive use in research situations and rigorously evaluated by the application
community

Among the research topics that will prove critical in achieving this goal are the following:
I Identification of features of interest in exabytes of data
41

I Visualization of streams of exabytes of data from scientific instruments
I Integrating simulation, anadjs, and visualizatiorat exascale

Ongoing activities supporting adiabatic expansion of existing technigues onto new hardware architectures
and R&D of new algorithms will continue throughout the time span. The major milestones and timetable
reflected in tle following table would be supported by development of many of the ideas at smaller scale,
beginning as soon as possible.

Timeframe Targets and MilestonesbData Analysis and Visualization

Planningand workshops

¥ Assess current tools amechnologies

¥ Perform needs and priority analysis across multiple disciplines
¥ Identify common components
¥

Identify new mathematical and statistical research needed for analysis ¢
exabyte data sets

Integrate analysis and visualization into scientific wonkfo
Develop exascale data analysis and visualization architecture documen|

¥ Commence initial set of projects for common components and domain
specific data analysis and visualization libraries

¥ Plan deployment dadglobal system of largecale high-resolution (100
Mpixel) visualization and data analysis systems to link universities and
research laboratories

+#

201011

+#

Develop 1.0 common component data analysis and vistialn libraries
Develop 1.0 priority domakspecific data analysis and visualisatldmaries

Begin deployment o global system of largscale high-resolution (100 Mpixel)
visualization and data analysis systems

Achieve data analysandvisualizationat 10° coreswith petabyte data sets
Provide sipport forheterogeneityn nodes

201213

Integrate data analysis and visaation tools in domahspecific workflows

201415 . . . " .
Achieve data analysis & visuaditionat 10° coreswith 10D100 petabyte data sets

Complete 2.0 domain specific data analysisdadalization libraries and workflows
201617 Complete 2.0 common component data analysis and visualisation libraries
Achieve data analysandvisualizationat 10° coreswith nearexascale data sets

201819 Roll out data analysis and visuadtionat exascale

4.3.2.4 Cross-Cutting Considerations

Architecture at coarse and fine graiAnalysis and visualization can use any or all of the computational,
storage, and network resourdées computational environment. Methods developed to address the

42

driving technology and sence issues are likely to intersect wiie design and implementation of future
architectures at all granularitigsom wide-area considerations to heterogeneity of available processing
elementsAlso, compiler and debugging tools appropriate for sofeadevelopment on exascale systems
will need to be developed to meet the needs of the timetable outlined above.

Opportunistic methoddvlany emerging approaches to analysis and visualization leverage opportunities
that arise from data locality (e.g.,situ methods), synergies of happenstance (as in analysis embedded in
I/O libraries and data movers), and unused capacity, mgkground analysis embedded in I/O servers).
These will each require coordination with figeained execution othe numericalalgorithmsused inthe
simulation, ongoing read/write operations, and sydtaral resource schedulinBesarchersshould

consider using exascale performance to rageiformmodel simulationswith data analysis and
visualization integrated into thensulation to avoid storing vast amounts of data for later analysis and
visualization. Thisstrategywould affect the development of domaipecific simulation codes.

End-to-endor global optimizatiors. Improvements in understanding algorithms for lasgale

heterogeneous architectures and the related advances in runtime and compiler technologies are likely to
afford new opportunities for performance optimization of the combined simulation and analysis
computationsTheseand other benefits may accrue from taking a more holistic view of thé&esmtl

scientific discovery pipeline. Integratimata analysis and visualization into domapecific exascale

scientific workflows will be essential tmaximizing the productivity of researchers working on exascale
systems.

4.3.3 Application Support: Scientific Data Management
4.3.3.1 Technology and Science Drivers for Scientific Data Management

Management, analysiandmining of largedata setslreadypresentchallenging poblens, but these
activitiesarecritical in petascale systems anill be even more so f@axascale systems. Most science
applications at this scale will be extremely data intensnaividual simulatios areexpected tgproduce
petabytes of data andhen combined with multiple executions, the data could appreeabyte scales.
Thus,managing scientific data has been identified by the scientific community as one of the most
important emerging needs because of the sheer volume and increasing comptiadityTde potential

impact ofexascale computing will be measured not just in the power it can provide for simulations but
also in the capabilities it provides for managing and making sense of the data pr@leadyg.needed is
anendto-end approach that encompasses all stdgma the initial data acquisition to the final analysis

of the data. Many common questions arise across various application disciplines. Are data management
tools available that can manage data at this8calthough scalable file systems are important as
underlying technoloigs, they are not suitabkes auserlevel mechanism for scientific data management.
What are the scalable algorithm techniques for statistical analysis and mining of data at thi&recale

there mathematical models? Does @re now and analyze la@model work at this scale? What are

the models and tools for indexing, queryiagd searching these massive datasets and for knowledge
discovery? What are the tools for workflow mamagat? An emerging model relies ever more on teams
working together to organize new data, develop derived data, and produce analyses based on the data, all
of which can be shared, searchadd queried. What are the models for such shaaimg what are

desgns for such databases or data warehouses?pmatanance is another critical issue at this scale.

What are scalable data formaasd what are the formats for metadata?

4.3.3.2 Alternative R&D Strategies for Scientific Data Management

Scientificdatamanagemeincovers many subfieldfrom data formats, workflow toolsndquery to data
mining and knowledge discovery. For most of the subfields, R&D strategies must simultaneously
consider the scalable 1/0 and storage devices for the required scaling for espsiates.

43

Data Analysis and Mining Software and Todisiowledge discovery from massive datasets prodoced
collected vill require sophisticated, easy-use yet scalable tools for statistical analysis, data processing
and data mining. Scalable algoritk and software must be developed that can handle multivariate,
multidimensional (and large number of dimensions), hierarchioal multiscale data at massive scales.
Scalable tools based on these algoritihmust be developedith a capability to incorpate other

algorithms. Traditionally, analytics and mining specification languages have been sequential and are
unable to scale to massive datasets. Parallel languages for analysis and mining that can scale to massive
data setsvill be important. Datanining and analysis scalability can also be addressed via the use of
accelerators such as GPGPUs and FR@Ad the development of scalable algorithms, libraged

tools that can exploit these acceleratoils ke important. Techniques for dine analyticsactivestorage
models,and ceprocessing models should be developed that can run concurrently (potentially on a
subsystem) with the simulations and can exploit the multicore nature of the systems. Also, maximizing
the use of data while it is available should be investigated.

Scientific WorRow Tools:Scientific workflow is defined as a series of structured activities, computation,
data analysis, and knowledge discovery that arise in scientific predgbsimg. That is, it is a set of tools

and software that allow a scientistspecify eneto-end control and data flow as well as coordination and
scheduling of various activities. Designing scalable workflow tools with-tzagge interfaces iV be

important for exascale systeni®th for performance arfdr scientificproductvity as well as for

effective use of these systems. Scaling of workflow tools will entail enhancements of current designs
and/or developing new approaches that can effectively use scalable analytics and I/O capabilities and that
can incorporate query pragging. New design mechanisms, including templates, semantic &ypkser
historieswill simplify workflow design and increase dependability. As a part of workflow tools, the

creation, management, queryjraid use of data provenance must be investigated

Extensions of Databases Syste@smmercial database systems such as those based on relational or
object modelgor derivation theredthave proved unsuitable for organizing, storiogquerying scientific
data at any reasonable scale. Although ihigléernative for pursuing data management solutions, it is
not likely to be successful.

Design of New Database Systendspotential approach to database systems for scientific computing is to
investigate completely new approaches that scale in performasedaility, query, data modelingnd an

ability to incorporate complex data types in scientific applications and that eliminate the overconstraining
usage models, which are impediments to scalability in traditional databases. Scalable filewijstams
critical as an underlying software layer, but not as a-lese interface for data management purposes. It

is critical to move to dataseriented paradigms for data management, in which the file systems serve the
data management layer and need toftemozed for limited functionality needed by the data management
layer, which in turn presents an intuitive, edsyuse interface to the user for managing, querying and
analyzing data with a capability for the users to embed their functions within thendaagement

systems.

Scalable Data Format and Highevel Libraries:Scientistause different data formats, mainly driven by

their ability to specify the multidimensional, multiscale, often sparse-s&uottured, unstructurednd

adaptive data. Example$ these formats and corresponding libraries include netCDF and HDF and their
corresponding parallel (PnetCDF and PHDF) versi@hanges in these have been drivesinly by

backward compatibility. Approaches to adaptl enhancthese formatand scad the data access

libraries must be investigated. Furthermore, new storage formats that emphasize scalability and the use of
effective parallel I/Qalong with the capabilities to incorporate analytics and workflow mechanégms
importantareas for researadnd developmen®Although the use of new storage devices such as SCM has
been discussed in the context of I/O systems, their use in redesigning or optimizing storage of data and

44

metadata for performance and effective queryingdgiel data formats anébraries should be pursued,
especially given that accessing metadata is a major bottleneck.

Search and Query ToolEffective searching and querying of scientific datacritical. New technology

is neededor efficient and scalable searching and filbgriof largescale, scientific multivariate datasets
with hundreds of searchable attributes to deliver the most relevant data and results. Users may be
interested in querying specific eventsloe presence or absence of certain data subsets. Furthermore,
filtering of data based on certain query specifications is important, including capabilities to combine
multiple data sets and query across them.

WideArea Data Access, Movement, and Query ToMigle-area data access is becoming an increasingly
important @rt of many scientific workflows. In order to most seamlessly interact with-ariela storage

systems, tools must be developed that can span various data management techniques across,a wide area
integrated with scalable 1/0, workflow tookndquery andsearch techniques.

4.3.3.3 Recommended Research Agenda for Scientific Data Management

The reommended research agendadoientific data managemesystemsncludes all items above
except for OExtensions to Database Syst@ms

Timeframe Targets and MilestonesD Scientific Data Management

Extensions andedesign obcalabledataformats
Extend capabilities ofvorkflow tools to incorporate analytics
Design of data mining and statistical algorithms for multiscale data

201011

Design and definition ofcientific databasesystems
Workflow tools with faultresiliency specification capabilities

201213 Integration of scalable 1/O techniques with wialea SDM technologies

KK K| K K K

+#

Analytics andmining for active storageSystemsincluding functionality for users tc
embed their functions.

201415 ¥ Scalable implementations of hidéwvel libraries for various higlevel data formats
¥ Scalablequeryandsearchcapabilities inscientific databaseystems

¥ Comprehensive parallel datamirig and analytics suites for scalable clusters witl
GPGPU and other accelerators

201617 ¥ Extensive capabilities for managing data provenance withiwtnkflow and other
SDM tools

¥ Online analyticscapability and its integration witlvorkflow tools

¥ Reattime knowledgediscovery andnsights

201819 ¥ Comprehensivecientific datamanagementiools

4.3.3.4 Cross-Cutting Considerations

Scientificdatamanagement clearly hasosscutting considerations with scalable storage and 1/0,
visualization techniques and tootgperating systemsault-resiliency mechanismghe communication
layer, and to some extepnprogramming models.

45

4.4 Cross -Cutting Dimensions
4.4.1 Resilience

Since exascale systems are expected to have millions of processors and hundreds of millions of cores,
resiliencewill be necesary for theexascaleapplicationsl|f the relevant components of the-stack are

not fault tolerant, then even relatively shiived applications are unlikely to finishr worse, may

terminate with an incorrect resullh other wods, insufficient resilience of the software infrastructure

would likely render extreme scale systems effectively unusable. The amount of data needing to be
checkpointed and the expected rate of faults for petascale and larger systems are already lexposing t
inadequaciesf traditional checkpoint/restart techniques. The trends predictftiatxascale systems

faults will be continuous and across all paftshe hardware and software layers, which will require new
programming paradigms. Because there is no compromise for resilience, the challenges it presents need to
beaddressedow for solutions to be ready whexascale systemarive.

4.4.1.1 Technology Drivers for Resilience
Five technology drivers have been identified.

I Exponential increasan the number of sockets, cores, threads, diskhd memory sizare
expected

I Because of the size and complexity, there will be more faults and a large variety ofsartors (
errors, silent soft errors, transient and permanent software and hardware errors) everywhere in the
system. Some projections consider than thedygtemmean time to failuravill be in the range
of oneminute.

I Silent soft errors will become signifiat and raise the issues of result andteneind data
correctness

I New technologies such as Flaskemory (SSD),phasechange RAM and accelerators will raise
bothnew opportunities (stable local storage, faster checkpointing, faster checkpoint compression
etc.) and new problems (capturing the state of acceleyators

I Intel has estimated that additional correctness checks on chip will increase power consumption
15E20%. The need to significantly reduce the overall power used by exascale sgdtkeng to
reduce the reliability of components and reducentkan timeo failure of the overall system.

4.4.1.2 Gap Analysis

This section briefly identifies the technology gaps that must be overcome in moving from current high
performance computing to the exascale.

I Existing fault tolerancéechniqus (global checkpoint/global restart) will b@practical athe
exascale New techniques for saving and restoring state need to be developed into practical
solutions

I The most common programming model, M&édges not offea paradigm for resilient
programming A failure of a single task often leads to killing the entire application.

I Presengpplicationsand system software areitherfault tolerant nor fault aware and are not
designed to confine errors/faults, to avoid orititheir propagation, angh recover from them
when possible.

I There isno communication or coordinatidretween the layers of the software stack in error/fault
detection and management, nor coordination for preventive or corrective actions.

46

Errors, faultroot causesand propagation are not well understood
There is almost nevererification ofthe results from large, loAginningsimulations

There areno standard metrics, no standardized experimental methodaodgo standard
experimental environmemd stress resilience solutions and compare them fairly.

4.4.1.3 Alternative R&D Strategies

Resilience can be attackdéam different antes:

¥
¥
¥
¥

Global recovery versusfilt confinemenandlocal recaery
Fault recovery versusafilt avoidance (fault prediction +ignation)
Transparenfsystem managedkersusapplication directed

Recovery by rollback versusgication

Since rollback recovery, as we know it today, will be not applicable byERO14, research negdo
progress on all techniques that helmvoidglobal coordination and global rollback.

4.4.1.4 Recommended Research Agenda for Resilience

The recommended research agenda follows two main tracks:

1.

Extend the applicability of rollback toward more local recovi@sgalable, low overhead, fault
tolerant protocols, integration of SSD and PRAM for checkpointing, reducing checkpoint size
(new execution state management), error and fault confinement and local recovery, consistent
fault management across layers (includipglication andsystem softwarénteractions),

language support and paradigm for resilience, and dynamic error handling by applications

Faultavoidance and fauttblivious software to limit the recovery from rollbaBkmprove RAS
collection and analysisdot cause)improve understanding of error/fault and their propagation
across layersdevelop situational awareness, sysiewel fault prediction for time optimal
checkpointing and migration, fatdblivious system software, and fawlblivious applicabns

Timeframe Targets and Milestones- Resilience

201012 ¥ Integration of checkpoint size reducing techniques (compiler, incrementa

Targetl: Extersion ofthe applicability ofrollbackrecovery

¥ Design ofscalable low-overheadfault-tolerant protocols

compression, etc.)
¥ Demonstrabn of partiatlocal replication asomplemento rollback

201315

Targetl: Extersion ofthe applicability ofrollbackrecovery

Integraton of Phasechange RAM technologies

Implementation of gor and fault confinementocal recovery, TMR (cores)
Development ofdultaware system software

Provision of Anguage suppoandparadigm foresilience

Developoment of gplication andsystemsoftwareinteractiongstandard API)
Consistency across layers (CIFTS or CIFTS like meismnas)

K K K K K K

47

Target2: Faultavoidanceandfault-oblivious software

¥ RAS collection and analysis (root cause), situational awareness
¥ Hardware and softwaiategration

Target2: Faultavoidanceand faultoblivious software

¥ Systemlevel fault predictiorfor time-optimal checkpointing and migration
¥ Faultoblivious system software
¥ Faultoblivious applications

201619

4.4.2 Power Management
4.4.2.1 Technology Drivers for Power Management

Power has become the leading design constraint for future HPC system designs. In thermally limited
designs, power also forces design compromises that lead to highly imbalanced computing systems (such
as reduced global system bandwidth). The design compesméquired for powdimited logic will

reduce system bandwidth and consequently reduce delivered application performance and greatly limit
the scope and effectiveness of such systems. From a system management perspective, effective power
management syasins can substantially reduce overall system power without reducing application
performance, and therefore make fielding such systems more practical apffextsie. The &isting

power management infrastructure has been derived from consumer eleatrdoes@dnd fundamentally
never had largscale systems in min&lVithout comprehensive crossitting technology development for
ascalable active power management infrastructure, power consumption will force design compromises
that will reduce the scope afehsibility of exascale HPC systems.

From an applications perspective, active power management techniques improve application performance
on systems with a limited power budget by dynamically dinggiower usage only to the portions of the
system thatequire it For example, a system without power management would melt if it operated
memory interfaces at full performance while also operating the flogting unit at full performandé

forcing design compromises that limit the memory bandwidth to QufEsklop according to the DARPA
projections In this thermally limited caséoweveronecan deliver higher memory bandwidth to the
application for short periods of time by shifting power away from other components. Whereas the
projected bandwidth ratifor a machine would be limited to 0.01 bytes/flop without power management,
the delivered bandwidth could be increased to 1 byte/flop for the period of time where the application is
bandwidth limited by shifting the power away from floating point (or attemponents that are uneer

utilized in the bandwidthimited phase of an algorithm). Therefore, power management is an important
part of enabling better delivered application performance through dynamic adjustment of system balance
to fit within a fixed pwer budget.

From a system management perspective, power is a leading component of systeostofadwnership.
Every megawatt of reduced power consumption translatesaweings of $1M/yeaon eventhe least
expensive energy contracEor systems tht are projected to consume hundreds of megawatts, power
reduction makes fielding of such systems more practical.-fée@sed power management technology
can have a much broader impact across the-segke computing market. Higgnd servers, which are

the building blocks of many HPC systemasereestimated to consume 2% of North American power
generation capacity as of 2006, and this factor is growing. By 2013, IDC estimates that HPC systems will
be the largest fraction of the higimd server markeHena, the direct impact of improved power
management technology is to reduce the operating costdscale HPC systems, but the broadgract

is to reduce power consumption of the largest and fastest growing sector of the computing technology
market (HPC gstems) and reduce carbon emissions for all server technology.

48

The current statef-the-art power management systems are based on features developed for the
consumetelectronics and laptop markets, which make local control decisions to reduce power.
Unfortunately, the technology to collect information across lagme systemandmake control

decisions that coordinate power management decisions across theisystenvell developechor are
reduced models of code performance for optimal corfftnthemore, the interfaces for representing
sensor data for the control system, desegilpolicies to the control system, and distringtcontrol
decisions are not available at scale. Effective systéaie power management will require development
of interfacestandards to enable both vertical (ebgtween local components and integrated system) and
horizontal (e.g between numerical librarieg)tegrationof componentsStandardization is also a
minimum requirement for broad international collaboration ewetbpment of software componeriihe
research and development effort required to bring these technologies into existence will touch on nearly
every element of a larggcale computing system desiyfrom library and algorithm design to system
management $owvare.

4.4.2.2 Alternative R&D Strategies for Power Management

Fundamentally, power management technology attempts to actively direct power towards useful work.
The goal is to reduce system power consumption without a corresponding impact on delivered
performanceThis is accomplished primarily through two approaches

1. Power down components when they are underutiliZzecamples include Dynamic Voltagad
Frequency Scaling (DVFS), which redudbe clock rate and operating voltage of components
when the OS directs it ttMemory systems also support many tpawer modes when operating
at low loadsMassive Arrays of Redundant Disks (MAID) allow disk arrays to be powered down
incrementally (subsetof disks) to reduce power. In the software space, operating systems or
libraries use information about the algorithm resource utilization to set power management policy
to reduce power.

2. Explicitly managedata movementBoth algorithms and hardware subtgyas are used to manage
data movement to make the most effective use of available bandwidth (and hence power)
Examples from the hardware space include solid state disk caches to lower I/O power for
frequently accessed data, offloading of work to accelesatind softwarenanaged memory
hierarchies (local storefgxamples from the software space include communication avoiding
algorithms, programming models that abstract use of local stores, and libraries that can adapt to
current power management statepower management policy.

Current power management features are defgwidarily from consumer technology, where the power
savings decisions are all made localgr a large parallel system, locally optimal solutions can be
tremendously nonoptimal atetsystem scal&Vhen nodes go into loywower modesopportunistically

based on local decisiortheycreate a jitter that can substantially reduce systemscale performance
Therefore localized automatic power management features are often toiffnea praluction HPC

systems. Moreover, the decision to change system balance dynamically to conserve power requires
advance notice because there is latency for changing between different powerkieodeghe control

loop for such a capability requires a predietcapability to make optimal control decisions. Therefore,

new mechanisms that can coordinate these power savings technologies at system scale will be required to
realize an energgfficiency benefit without a corresponding loss in delivered performance.

A completdy adaptive control system requires a method for sensing current resource requirements,
making a control decision based on an accurate model for how the system will respond to the control
decision, and then distributing that control decisioa goordinated fashion. Currentthe control loop

for accomplishing this kind of optimal control for power management is fundamentally brokdictive
models for response to control decisiane generally handrafted (a timeconsuming process) foreh

49

few examples that existhere is @ common gpression of policy or objectiv&here is 0

comprehensive monitoring or daggregationMore important, there is almosb tool support for

integration of power management ititoraries andapplicationcodes. Without substantial investments to
create systemwide control systems for power management, standards to enable vertical and horizontal
integration of these capabilities, and the tools to facilitate easier integration of power management
features int@pplication codes, there is little chance that effective power management technologies will
emergeThe consequence will be systems that must compromise system balance (and hence delivered
application performance) to fit within fixed power constraintssymtems that have impractical power
requirements.

4.4.2.3 Recommended Research Agenda for Power Management

The R&D required for the >tack to enable comprehensiggstemwide power management is
pervasive and will touch on a broad variety of system components. Thecattisg research agenda
includes the following elements.

Operating System/Node Scale Resource Managemefperating systems must suppquility-of-
servicemanagement for nodevel access to very limited/shared resourEes example, the OS must
enable coordinated/fair sharing of the memory interface and network adaptor by hundreds or even
thousands of processors on the same node. Support for local batiagintrol decisions requie
standardizednonitoring interfaces for energy amesource utilization (PAPI for energpunters.
Standard control and monitoring interfaces enalifgptable software to handle diversity of hardware
features/designg-utureoperating systemimust also manage new povefficientarchitectures
heterogeneousomputing resources, including devices such as GPUs, embeddedabBbsnvolatile
low-power memory and storagenddata movement and locality in memory hierarchy

Systanscale ResourceManagement: Power performance monitoring araggregatiorare needethat
scale taa 1 billion-core systemSystem management serviaegjuire standard interfaces to enable
coordination across subsystems and international collaboratiomgoooent development. Many power
management decisions must be executed too rapidly for a software implemeardtizencenust be
expressed as a declarative policy rather than a procedural description of. dt¢tare$ore, policy
descriptios must be statardizedto do finegrained management on chip particular,standardsre
requiredfor specifying reducechodels ofhardwaregpower impact and algorithm performanio make
logistical decisions about when and where to move computation as wellraspbese to adaptations.
Theseincludeanalytical power models of system respoasdempirical models based on advanced
learning theoryAlso needed arscalablecontrol algorithms to bridgthe gap between global and local
models Systems to aggregatenser data from across the system (scalable data assimilation and
reduction)mustmake control decisions and distribute those control decisions in a coordinated fashion
across largescale systems hardwaioth online and offline tuning options based onatbed search
pruning heuristicshould be considered.

Algorithms: We must investigate energyvare algorithms that baseder of complexity on energyost

of operations rather than FLORPsgood example of this approach mnemunicatioravoiding

algorithms whichtradeoff FLOPS for communication to save ener§incethe optimal tradeff is

context specifihhoweverwe must aeable libraries to be annotated foparameterized model of energy to
articulate a policy to manage those tradis on different gstem architectures. Standardizing the
approach to specifyinightweight models to predict response to resource adjustwikie important to
this effort.

Libraries: To create crosarchitecture compatible, energyvare libraries, library designers negedise
their domainspecific knowledge of the algorithm to provide power management and policy hints to the
power management infrastructuiiénis research agenda requitkatperformancefeergy efficieny

50

models and power managemaenerfaces irsoftwae librariesbe standardizeduch standardization will
ensure compatibility of the management interfaces and policy coordination across different libraries
(horizontal integration) as well as support portability across different machines (verticaltintégra

Compilers: Compilers and code generators must be able to automatically instrumeffbrcpdeer
management sensors and control interfaces to improve the programmability of such.systepiler
technology can be augmented taamatically exposekobs for controlO and OsensorsO for monitoring
of nonlibrary codeA more advanced research tofEc¢o find ways toautomatically generateduced
performance and energy consumptioadels to predict response to resource adaptation

Applications: Applications require moreftective declarative annotatiofisr policy objectives and
interfacedo coordinate with advanced powaware libraries and power management subsystems.

The proposed research agenda targets the following key metrics for impoeeiradl effectiveness of
exascale systems.

I Performance: Scalable, lightweight, and crassftware hierarchy performance models (analytic
models and empirical models) need tocbegructedthat enable predictive control of application
execution, so that wean find ways of reducingower without having deleteriousmpact on
performance

I Programmability : The applicationslevelopersannot be expected to manage power explicitly
due to the overwhelming complexity of the hardware mechanisms. Making powegenzera
accessible to application and library architeetpuirescoordinatedsupport from compiler,
libraries, and systerervices.

I Composaility : There must be standards to enable system compcaneahiforarieshat are
developed by different researclogpsto work in coordinated fashion with underlying power
systems. Standardization of monitoring and control interfaces minimizesitiger of
incompatible aehoc approachesnd enables arrganizeal international effort

I Scalability: We mustbe ableto integrate information fronthe OS,the systemlevel resource
manager, and applicatioasdlibrariesfor a unified strategy to meet objectives

Timeframe Targets and MilestonesDPower Management

Energymonitoring Interface Standards
Energyaware/communication avoiding algorithms

I Systemmanagement

I Algorithms

I Libraries

I Compilers andrameworks
I Applications

201011

Local OSmanagedNodeLevel, Energy Efficiency Adaptation

201213 Systemlevel standard interfaces for data collection and disseminatioantrol
requests

51

Compatible EnergdAware LibrariesUsing Standardized Interfaces

Ability to annotatdibraries for parameterized model of energy to articulate a policy

201415 manage tradeffs (different architectures)
Standardized approach to egpsing lightweight performance models for predictive

control (analytic models and empirical models)

Scalable algorithms for adaptive control

Automated Code Instrumentation (Compilers, CGemerators, Frameworks)

201617 Standardized models of hardwamer impact and algorithm performance to make
logistical decisions (when/where to move computation + response to adaptations)

Automated Systerhevel Adaptation for Energy Efficiency
201819

Scale up systems tohlllion-way parallel adaptive contrdiecision capability

4.4.3 Performance Optimization
4.4.3.1 Technology and Science Drivers for Performance Optimization

Exascale systems will consist of increasingly complex architectures with massive numbers of potentially
heterogeneous components and deeper memanrtiges. Meanwhile, hierarchies of large, multifaceted
software components will be required to build rRgeheration applications. Taken together, this
architectural and application complexity is compounded by the fact that future systems will be more
dynamic in order to respond to external constraints such as power and failures. As reduded time
solution is still the major reason to use supercomputers, powerful integrated performance modeling,
prediction, measurement, analysis, and optimization capebiliill be required to efficiently operate an
exascale system.

4.4.3.2 Alternative R&D Strategies for Performance Optimization

In the exascale regime the challenges of performance instrumentation, analysis, madeling

engineering will be commensurate with tmmplexity of the architectures and applicatiofs

instrumented application is nothing but an application with modified demands on the system executing it.
This makes current approaches for performance analysis still feasible in the future as |bmyelsed

software components are concurrent and scalable. In addition to increased scalability of current tools and
the use of inherently more scalable methaugish asstatistical profiling, techniquesuch asautomatic or
automated analysis, advancdtkfing, ortline monitoring, clusteringand analysis as well as data mining

will be of increased importance. A combination of various techniques will have to be applied.

Another alternative is a more performarmeare and modddased design and implemetida of
hardware and software components from the beginning, instead of trying to increase the performance of
functionally correct but poorly performing application after the fact.

In addition to usecontrolled analysis and tuning, especially on higlbgel (internode) components of
the X-stack, selmonitoring, seltuning frameworks, middleware, and runtime schedNespecially at
node levelbll are necessary. Autotuning facilities will be of great importance here.

Worse, all of these approaches might work for machine architectures that are radical departures from
todayOs machinéekhis situationlikely will need fundamentally different approaches to performance
optimization.

52

In the performance modeling area, new methodologies wildeeledhat g beyonda static description

of the performance of applications running on the system, to capture the dynamic performance behavior
under power and reliability constraints. Performance modeling will also be a main tool fordasigo

of architectures ahapplications.

4.4.3.3 Recommended Research Agenda for Performance Optimization
The following considerations are key for a successful approach to perforatasaescale

I Continual development of scalable performance measurensehliéction analysis (online
reduction and filtering, clustering), and visualization (hierarchical) facilities. Here, performance
analysis needs to incorporate techniques from the ardaatafe detectiorsignal processing
and data mining.

I Support for modeling, easurementand analysis of heterogeneous hardware systems

I Support for modeling, measurement and analysis of hybrid programming models (mixing MPI,
PGAS, OpenMPand other threading models, accelerator interfaces)

I Automated/automatic diagnosisdautotuning.

I Reliable and accurateedformance analysis itne presence of noisesystem adaptatioand
faults. This work will require inclusion of appropriate statistical descriptions

I Performance optimization for metriotherthan time (e.g power)

I Performance observability and contrbly hardware and software componetitsough appropriate
interfaces and mechanisms (e.g., countdisg aim igo provide sufficient performance details
for analysis if a performance problem unexpectedly escalates to kegkts. Vertical integration
across software layers (OS, compilers, runtime systems, middleware, and appliciitiom)
needed for this task

I Design of pogramming models with performance analysis in mBaftware and runtime
systems must expose theiodel of execution and adaptatias well as theicorresponding
performance through (standardized) control mechanism in the runtime system.

Timeframe Targets and MilestonesDPerformance Optimization
¥ Support for hybrid programming moddhixing MPIl, PGAS, OpenMPand
201213 other threading models, accelerator interfaces)
¥ Supportfor modeling, measurement, and analysis, and autotuning on/for
heterogeneous hardware platforms
201415 ¥ Handing of observation of millioaway concurrency
¥ Predictive eascale system design
¥ Handing of observation of hundreds of millieway concurrency
201617 ¥ Characterize performance of exascale hardware and software for applicati
enablement
201819 ¥ Handing of observation of billioaway concurrency

4.4.3.4 Cross-Cutting Considerations

In order b ensure performance analysis and optimizatibexascalethe various components and layers
of the X-stackmustbe transparent with respect to performance. Ppeiformance irtransparencywill

53

result in escalation of unforeseen problems to higher layers, including the applitiatfonot a new
problem, but certain properties of an exascale system significantly increase its severity and significance.

I Atthis scale, there always will baifing components in the system with a large impact on
performance. A realorld application will never run on the exact same configuration twice.

I Load-balancing issues limit the success even on moderately concurrent systems, and the
challenge of localityvill become another severe isghathas to be addressed by appropriate
mechanisms and tools.

I Dynamic power managemef®.g., athe hardware level inside a CRWill result in performance
variability between cores and across different runs. The altegradtrunning at lower speed
without dynamic power adjustments may not be an option in the future.

I The unknown expectation of the application performataxascalevill make it difficult to
detect a performance problem if it is escalated undetectée &pplication level.

I The evergrowing higher integration of components into a single chip and the use of more and
more hardware accelerators make it more difficult to monitor application performance and move
performance data out of the system unlessiapkardware support will be integrated into future
systems.

I Performance comes from all layasbthe X-stack, so an increased integration with the different
layers, especially the operating systems, compilers, and runtime systems will be essential.

An integrated and collaborative approadbarly is needetb handle performance issues and correctly
detect and analyze performance problems.

4.4.4 Programmability

Programmabilityis the cosscuttingproperty that reflects the ease by which application programsmay
constructed. Although quantitative metrics are uncertain (e.g., SLOC) in their effectivegesktative
level of effort in programmer time may reflect relative degree, noting that there is no Obell jarO
programmer by which to make absolute compmarss Programmability itself involves three stages of
application developmentl) program algorithm capture and representa{idnprogram correctness
debugging, an@3) program performance optimization. All levels of the sysiaaiuding the
programmingenvironment, the system software, and the system hardware architaffecte
programmability. The challenges to achieving programmability are mygtded both to the
representation of the user application algorithm and to underlying resource usage.

I Parallelismbsufficient parallelism must be exposed to main&xiascale operation and hide
latencies. It is anticipated that 10 billievay operation concurrency will be required.

I Distributed Resource Allocation and Locality Managemziat make such stems
programmablethe tensiomust be balanceetween spreading the work among enough
execution resources for parallel execution and colocating tasks and data to minimize latency.

I Latency Hidingbintrinsic methods for overlapping communication wdtimputation must be
incorporated to avoid blocking of tasks and low utilization of computing resources.

I Hardware ldiosyncrasid3properties peculiar to specific computing resources such as memory
hierarchies, instruction setndaccelerators must be nmaged in a way that circumvents their
negative impact while exploiting their potential opportunities without demanding explicit user
control.

I PortabilityBapplication programs must be portable across machine types, machine scales, and
machine generationPerformance sensitivity to small code perturbations should be minimized.

54

I Synchronization Bottleneck8barriers and other overconstraining control methods must be
replaced by lightweight synchronization overlapping phases of computation.

4.4.4.1 Technology and Sci ence Drivers for Programmability

As a qosscuttingproperty ofexascale systemgrogrammability is directhaffectedby all layers of the

system stack. The programming model and language provide the application programming interface to the
user, determia the semantics of parallel computing, and deliver the degree of control and abstraction of
the underlying parallel execution system. The compiler assisixtracting program parallelism,

establishing granularity of computing tasks, and contributing to task scheduling and allocation. The
runtime system is critical to exploiting runtime information and determines the level of dynamic adaptive
optimizationthat can be exploited. The operating system supports the runtime system by providing
hardware resources on demand and providing robust operatidnwhile not part of the software

system, the architecture directffectsprogrammability by fixing the eerhead costs, latency times,

power requirements, memory hierarchy structures, heterogeneous cores, and other machine elements that
determine many of the challenges to programming and execution.

4.4.4.2 Alternative R&D Strategies for Programmability

The two generadtrategies for programmability aegolutionary based on incremental extensions to
conventional programming models, amdolutionary based on a new model of computation that directly
addresses the challenges to achieexapcale computinglhe evolutionary strategys expected tde

pursued as part @ommunityefforts to extend common practices as far into the ipetaflops

performance regime as possible. The MMHorum, the HPCS program, and the roadmaps for Cray and
IBM indicate possible trajecties of such incremental approaches. Hybrid programming models derived
from the integration of MPI and OCL or UPC have been suggested to achieve higher levels of scalability
through hierarchical parallelism while retaining compatibility with existing legacles, libraries,

software environmentand skill sets. However, it is uncertain as to howttiarevolutionary approach

can be extended to meet the escalating challenges of scalability, reliability, and power. The evolutionary
strategy also assumes iamental extensions to current operating systems, primarily Unix derivatives
(e.g., Linux), that can improve efficiency of synchronization and scheduling while retaining the basic
process, Pthreads, and file model.

The revolutionary path follows historicphtterns of devising new paradigms to address the opportunities
and challenges of emergent enabling technologies and the architectures devised to exploit them.
Revolutionary programming models and contributions at other system layers can be createdize min

the programming burden of the programmer by employing methods that eschew the constraints of earlier
techniques while reinforcing the potential of future system classes.

4.4.4.3 Recommended Research Agenda for Programmability

Unlike programming models andniguages, programmability spans all components of the system stack,
both system software and hardware architectheg inanyway influence the usability of the system to
craft realworld applications and have them perform correctly and with optimalnoeafuce through
minimum programmer time and effort. Thughile researclin programmability must include factors of
programming models, languages, and toblill also consider compilers, runtime systems, operating
systems, and hardware architecturectties and semantics.

New Model of Computation In synthesizing the effects of potentially all system layers on
programmability, a single unifying conceptual framework is required to provide the governing principles
establishing the functionality and intgrerability of the system components to operate in synergy and
realize critical performance properti€sSP, he common scalable execution model for STEM application
targeted systemss alreadyunduly stressed in support of present ncolt#many-core he¢rogeneous

55

systems and cannot, in its current form, be expected to achieve the required functionality for scalability,
efficiency, and dynamic scheduling. Therefore, researgstbe conducted to devise a newerarching
execution model either as a dramatxtension of current practices or an entirely new (likely based in part
on experimental prior art) model of computation explicitly derived to address the unique challenges of
exascale computing.

New Programming Models and MethodsResearchinto new prggramming models and ultimately

APls, tools, and methods will be requirgdorderto provide the user interface to construct new

application (and system software) programs and to determiioh vasponsibilities of control afxascale
systems will devolvelirectly to the user and which will be assigned to lower levels of the syttem

relieving the user of these burdens (but possible inhibiting needed control as well). An important property
of any new programming model is a clear separation of logioatifunality from performance attributes

such a separatiattistinguistesthose aspects of code specification that convey across multiple platforms
unchanged (portability) from those that must be adjusted on a per platform basis for performance
optimization(tuning). Preferably, all machirgpecific program optimizations will be accomplished by

lower system layers. New programming models will have to greatly expand the diversity of parallelism
forms and sizes over conventional control semantics to draniaiitetlease by many orders of

maghnitude exploitable concurrency. Additionally, whether entirely new or an extended derivative, the
nextgeneratiorexascalgorogramming models will have to interoperate with legacy codes, both
application (e.g., numericabkaries) and systems software (e.g., parallel file systems), for ease of
transition of community mission critical workloads to the new classesasicale systems architecture.

Future models need facludesemantic constructs in support of the broad easfgdynamic grapirased
algorithms whose access, search, and manipulation can be very different from more prosaic vectors and
matrices for which current systems have been optimized. Emergent programming methods will require
new tools and environments taakethebest use of them from a programmer perspective.

New Runtime SystemsResearclinto advanced runtime systems will be an important means of
dramatically improving programmability supporting dynamic software behastiich asoad balancing,
thread sheduling, processing and memory resource allocation, power management, and recovery from
failures. Only runtime systems (angerating system® some degree) can take advantage etherfly

system status and intermediate application software stateatirabtdoe predicted at compile time alone.
This situationwill be particularly true for systems of up to a billion cores and constantly changing system
configurations. In particular, new runtime software will move most programming practicea ftaic
methodology to dynamic adaptive techniques exploiting runtime information for improved performance
optimization. Examples include the lightweight thread scheduling, context switching, and suspension
management, as well as interthread synchronization, maeagefideep memory hierarchies, and
namespace management. For dynamic giegsed problems, datfirected execution using the graph
structure to efficiently define the parallel program execution will require runtime support.

New Compiler Support While much of the responsibility of future compilers will reflect prior
techniques for baeknd support, many new responsibilities will accrue as well to drivexdszale
systems of the future. Advanced compiler techniques and software will be required foatautantime
tuning to match hardware architecture specific properties (e.g., cache sizes), for heterogeneous
architectures, to interface with and support advanced runtime systems, to detect alternative forms of
parallelism, for employing advanced synchration semantics and primitivet®, takeadvantage of more
sophisticated messaging methods (e.g., mes$idagen mechanisms), arnd involvenew forms of active
global addressspace and its management.

X-Gen Architectures: Although the actual developmenitexascale architectures is beyond the scope of
the IESP program agenda, researctritical system software and programming methods will be
sensitive to and have to respond to the emergence of new archite®iupesticular concern are methods

56

to reduce the temporal and power overheads of parallel control mechawigtimsize the exploitation of
heterogeneous core architectures, supporsédi reconfigurable system structure techniques for fault
tolerance, engage in active power managementsapgort seHaware resource management.

New Operating SystemWhile the execution model is the machiae seen from the semantic

perspective, the operating system is the machine from the usage viewpoint. The OS owns the system,
manages its resources, andkes them available to the program layer as well as @ewidny services

to that layer. A new operating system will be essential for HyeiXarchitectures anteir supporting
programming environmentscluding APIs, compilers, and greatly expandedtime software. One of

the most important attributes of a new OS is its cmgrstant scaling property such that it can operate at
speedindependent othescale of number of processor cores or memory banks. A second critical property
is the managemeuwnf an advanced class of global address space that can support multiple applications
sharing all resources in the presence of the need for dynamic allocation and data meyatias it

provides interjob protection. The new OS must support the gregthneed role of the runtime system

even as it takes on the added complexity of dealing with heterogeneous cores and deeper memory
hierarchies. The old view of conventional processes and parallel OS threads will have to be revised,
supporting much more liglveight mechanisms offered by the underlying architectures while yielding
many responsibilities to the runtime software driven by application requirements and new programming
models. The operating system will have to provide much more information abterhayserational state

so that seHawareresource management techniques can be more effectively developed and applied for
fail-safe powerefficient scalable operation.

4.4.4.4 Cross-Cutting Considerations

Programmability is arosscuttingfactor affected by allayers of the system stack including software and
hardware. It also is interrelated with othensscuttingfactors such as performance and potentially
resilience Whetherthereexistsa relationship between programmability and power managesent
uncertén. However,when writing system softwarene clearly need® develop power management
software for the operating system and possibly the runtime system.

Programmability and performance are tightly coupled. For-pigtiormance computing, a major factor
affecting programmability has been performance optimization. This relates to the exposure of application
parallelism, locality management and load balancing, and memory hierarchy manaJémasat.
componentsre expected tbe even morémportant forexascale systems. The complexi@ythat extreme
scalewill require that the responsibility for all but parallelism (and even not all of that) be removed from
the programmer and handled &gombination of compiler and runtime in cooperation with the operating
system and system architecture.

With respect to reliability, it may bealuablefor the programmer to have the optiofdictaing the
required recourse in the presence of fagltsh as recovery or prioritized actions (in the case of urgent/
reattime computing). However, default options should be prevalent and used most of thmtorgerto
minimize programmer intervention and therefore improve programmability.

4.5 Summary of X - Stack Priorities

Below we present a prioritized list of research and devedop items for each software component area
in the X-stack To assure that software efforts receive appropriate attemimnsetwo attributes for each
effort:

I Unigueness texascale: Some efforts are concerned with exascale systems and have little
relevance for less capable systefther efforts are relevant to exascale but will likely impact
lesser system@.e., petascale and uppend terascajewe refer to this asspanningdAnd some
efforts are important to all future scales of computing.

57

Criticality for exascale: During early classification discussions, we determined that uniqueness to
exascale was insufficient for prioritizing activitiés particular, although there are efforts that are
not unique to exascale, some of these are esstmtmlccessful exascale computing. We classify

an items criticality as either critical, unknown/indeterminate, orerdical.

The following are examples:

Application-managed resilience uniquely exascale and critical:Resilience is an issue for

many effortsHistorically, resilience has not required applications to do anything but
checkpoint/restariAt presentthere is general agreement that the entire software stack, including
user and library code, will need to ¢ixfily address resilience beyond the classic
checkpoint/restart approach

Many-core mathematical librariesEnot uniquely exascale but critcal: Many-core

configurationis an essential element of all exascale plans, but libraries for-ouaay
configuratbnsare also critical for all levels of computinglthough exascale requirements may
exceed those of scales, we should recognize and leverage other funding sources for this kind of
work, clearly identifying and funding the uniquely exascale aspectssofvtirik.

The table below lists each of theskackcomponents along with theireeded capabilities. Each
component capability is followed, to the right, by its uniqueness and critiedkyascaléevel. The
following scale is used:

Unigueness Criticality
Unique = 3 Critical =C
Spanning= 2 Unknown = U
Nonunique = 1 Noncritical= N
56%/&%4.(| 56%/&%4]
FH#B%E& () *+,*-.-$/ (0..1.1()%,%2343%3./ 7-389.-./1 (|):3$3&%4|
+&%*,-,&./&1012!$.35,-,5,&* 6! 7!
84-59.%5,545,(.$-:9%4-5,#(<&/B+$=(#3$5,(.!;-$. ! >| ?!
@((-Y/AS$,.!13&B&-(;%&.5:*&-&/5 . > ?!
"H#3%E&'(#)* ! 1#(C#$%%,.C!%(3&-1&B$-4$5,(.:$3(;5X.! > 7!
D$5%!;-$/&%8& 15 >l 7!
84-5,/(%;(.&.5'*,%4-$5,(.! 45,-,5,&* > ?!
0//&**I5(15A #JSH#5E!-, =#$# &* F 7!
"$4-8=- B, (4*18## (B (-$.5!*(I5'$H#& 6! 7!
O*E./A#(.(4*1%&5A(3*! > 7!
KB&#-$;13$5%!$.3!/(%;45%5,(. 6! ?!
L&-353$;5,.CIAE=#,3!$.3!A, &#$H#H/A,/$-1=$*&3!
$-C(#,5A%*! F! 7!
ME=#,3!$.3!A,&#$#/ AG$H*&3!1$-C(#,5A%*INK.OC
EETRE AR i -,.&$#!$-C&:#$!*;-,5!$/#(**!%4-5$/(#&R&L3Q F! ?!
0-C(#,5A%*!5A%$5!%,.,%,R&!/(%%4.,/$3,(.* 6! 7!
O#/A,5&/I5%85' $#&!$-C(#,5A%* - =#S#,&* 6! 7!
045(54.,.CE$*&31*(I5'$#& F! ?!
L5%$.3%$#3,R$5,(.!$/5,B,5,&*! F! ?!
S.&#C%JJ,/,&.5!$-C(#,5A%* > ?!

58

8,T&3!$#,5A%&5,/ F 21
L/$-$=,-,5E N G
0-C(# 5A%* $4-55(-&H#S$ /& HE* - &.I& F G
7(.J(#%,.CI5(IS#/A, 5&/5A#S-1H&U 4 #E&Y6&.5* 6! G
G&'I$HE&S*:4*&*1(JI$-C (#,5A%* F 21
7(/A##8&./E!$. 31$H/A 5&/5AH#&!3#, BEOA,
JHEMS. [ENJI&HH(#*: IS, -AH& 6! 7!
L/$-$=,- 5E!(J13&=4CCE&#!%&5A(3(-(C,&*N3$54
B(-4%8&*1$.3].5&#I$/&FQ 6! 7!
"(14*(.1%4-5,-&B&-13&=4CC,.CI'/(%%4.,/$5,.C!
3&5$,-*1(J1I$4-541=85'&&.1*(I5' $H& - HE&H#* 6! 21
LE.5A&* *1(J1J$4-5! #36$5,(1,.5(14.3&#*5$.3,.C!
,J5A&!/(.5&T5!(J1$;;*1$.31$#/A 5&/54H#& 6! 7!
DEACC. I L;&/,$-,R&3!-,CA5'&, Q/EBI$5,.CI*E*58%* N G
- 045(%$5,/15#,CC&#*1!.8&&31/(%;,-&!5,%&!=#,3C4
3&=4CC,.6A$HEY(B&*.&&3I5(1#E&H4. >| G
L/$-$=-&!/-4*5&#,.CI(I1B!;#(/&**1*5$58&*1$.3!
/(.5&T5*I1}5&#*&SH#/A!' 5A,.13&=4CC&# >| G
V&H#5,/$-1, . 5&CH#$5,(.1(J13&=4C!$.31;&#!,.J(#%$5
SIH(1*(I5'$H&I-SE&H >| G
ST/,*,(1(J'=4CCEY/(3&!*.,;;&5*5(1#4.1$5!-(&#!
J(JAH##E], &* | F G
M&5&#(C&.&5E F G
74%5(%,R$5,(.I', SAI2:K; 4#;(*& B#,B&I2K! 6! 71
G&'12:K1%(3&-*ILWI#4.5,%&*E*5&%*!$.31-,=* 6! 71
2.5&-,C&.5:($/5,B&IS/A,.CI%&IAS. *%*1(#12:K 6! G
"$4-B (-&H#$T%&IAS.,* VoA 6! 71
2:K,.5(1;#(C#$%%,.®6(3&-*1$.31-$.CASC&* 6! G
X$-$./&31$#/A 5&/54#&*!" Al & &#!3&Bl/&* N G
2:K " -&I*E*5&Y*|(#1$-5&#.$5,B&I%&IAS., *%o* N G
0/5,B&I*5(#$C& N G
W,385#&$12:16.3!, 5&CH#S$5, (.|(JI1&TE&#.$-1*5(#$(
EX504 >| G
L;&/,$-94#;(*&).&5'(#) #(5(/(-1I (), $#$--&-, * %! N G
X$-$./&31$#/A 5&/54#&*!" GA.& &#!3&B,/&*!
8%=8&33&3",5AI5A&!.(3& F G
L/$-$=-&!3$5$!$.$-E* *I$.31%,.,.CILW!$.3I5((-* 6! 7!
L/$-$=-&!13$5$1(#%$5!$.BIME&B&-1#3#,8 6! 7!
1/,&.5,3,1385%! | L/,&.5,3,/'(#)I-(*I5((-* ! N 7!
%%$.$C&%&.5 L&SH/AIS.3IUAEHE!5((-* N G
W, 383B#8$!3$55!$//&**1%(B&%&.5!$.31U4&HE!5 N G
1/,&.5,],/13$5$=$*&* >I G
ST$*/$-&!;#(CH#$%%,.C1%(B&- 6! 71
1#(C#$%%,.C1%(3&- L/$-$=-&III$AHH-&#$.5!81D 6! 71
0;; -,/$5,(.*13&B&-(;%&.5!5((* 6! G

59

M&5&#(C&.&(4*!.(3&!;#(C#$%%,.C!%(3&- >! 7!
D(%$,. 9:&/,J,/:#(C#H$%%,. @b (3&-4 >! Gl
Hp.CA$C&II&S5A#& I (#1%$** B&-E 1 13HS--&- >| 21
Hp.CASC&I*4;;(#51J(#1$3%;5,B&!/(%;45%5(. >! Gl
2584 (;&#$=,-,5E!1=&5'&&.1%(3&-* F >Gl
2%;-8%&.5!&T$*/$-&!-$.CA$CE* 6! 7!
L4;;(#51)(#I1#&* -, &.I1& 6! 7!
2%:;-&%8&.5!A&5&H#(C&.&(4*!#§%%, . ®b(3&-4 >| 7!
L4;;(#51J(#1%$** B&I2tK >| 7!
7(%%;,-81 G&'(;5 ,%,R$5,(J#$%&' (#)" >! G
Sl 258#$/.*1=&5'&&.1/(%;,-&#*1$.315((-*1#4.5,%& >| 7!
DE.$%,/!/(%;,-$5,(.I' J&&3$/)!(;5,%,R$5, (.1 >| Gl
045(54.,.CE=$*&3!*(J5'$#& >| G
SA$./&%&.5*15(1&T,*5,.CI-$.C4$C&*:012* F! Gl
045(%$5,/!;$#$--&-,R$S,(. F! Gl
D&J,.&5A&!I=$*&!KLINL5$.3$#B1012Q 6! 7!
012*1(#IH&* - & J&INS/I&**15(1+0LI1&5/Q 6! 7!
7(--&/5,B&!K(;&#S$5,(.*! 6! Gl
L/$-$=-&I*E*5&%!* %4-$5,(.1&.B,#(.%&.5 >! 7!
K;&#$5,.CILE*5&%* | 2%;#(B&31012*1J(#!*/$-$=-&!(&%5./&!
%(.,5(#,.C!$.3!13&=4CC,.C >| 7!
G&'1012*1)(#!&.&#CE1%$.$C&%&.5 >! 21
2%:;#(B&31012*1J(#1&T;- ./, 5! %$.$C&%&.5 F 7!
2%:;#(B&3!01D(#!5A#&$3.C F 21
STE#&Y&/B-$=&; &#[#%$./& % &5A(3*1$.3!
5((-*! 6! 7!
18#I(#%$./&1%&$*4#8%&.5!$.31%(3&-,.C!, !
H#&*&.1&(JN.(,*&:IB4-5F 6! 7!
045(%%$5&3:$45(%%$5,/13,$C. (1$:31$45(54.,.Q >| Gl
1#&3,/5,B&1JA54# 8! SHC&I*E*58%!3&*!C. >| 7!
L&alls G V&H5,[$-B&CHSS, (1 S/H#(*ILWI-SE&#* >| Gl
18#H%$./1& B'$#&!3&*,C.1$.31%;-8&%&.5%5, (! >| 21
1%$./1&1(;5 ,%,R$5, (LI (#!(5A%&5#,/*I5A$
5,%& >! 21
L4;;(#51(#IA&S8H#(C&. &(M$#3'$#85.31AE=#,3!
H#(CH$%%,. ®b(3&-4 F 7!
1('&#! ; &#H%S$./&1%(.,5(#,.C!$.31$CCH#&CS5, (!
5A$5!*/$-&*IBHE, -, (1 (H&IFE*5&% 6! 7!
1('&#/(.5#(-1*E*5&% 6! 7!
L/$-$=&!/(.5#(-1$-C(#,5AUB(I=#,3C&IC$;|=&5'&&
1('&# ! C-(=-1.3!-(/$-!;('%(3&-*! >| 7!
1(&# B'SH&IS.31/$-$=-& 1#&*(4#/&)/(.5#(-!$.3!
*/A&34-,.C >! 7!
K;5,%%--B4.&31*E*5&%!;(‘=$*&3!(.1/(.5#(-!
-((! F Gl

60

1('&H!, *5#4%&.5%5,(.1$.3!/(.5#(-!

*5%.3$#3,R$5 . F Gl
G&'1 %(3&-*1(31/(%;45$5,(.! 6! 7!
G&'1#.5,%8:KL!,.58#I$/&1J(#1&.B #(.%8&.5!$'$#
1#(CH#$%%$=,-15E | :#(CH$%%,.C >| 7!
1#(C#$%%$=, -, 5EI5(13&/(4;-& & TSHHGEY0!
AR IH(%!1$;:,/$5,(* L #(CHSY%%,.C F 7!
1&H#I(H%S$./&1%8&$*4#8%&.51$.31%(3&-,.C!, .|
#8*&./8&)I$A-5H] 6! 7!
X&55&H#1I$4-515(-&#S./1&1;#(5(/(-* N 7!
"$4-51 *(-$5,(.1/(.J,.&%&.5! N 7!
G\B+081J(#!-(/$-1*5$5&11/$/A&! (1, -&*E*5&% N 7!
+&;-,$5,(IN@8+1=$/)4;1/(#&Q N 21
1#($/5,B&!$/5,(.*IN%,C#$5,(.Q N 21
D(%$,.9:&/,J,/10121$.345 - 5 &*1(H I#$%&' (#)* N 7!
0;; -./$5,(.*C4,3&3!11$4-51%%$.$C&I&.5 N 7!
HS$.CA$C&:/(%:;,-&#:#4.5 Y& *4;; (B I (HIHE* - &.
NJISAIBSH#&!:#(CH$%%, .CII012! JH(EhI!+0LD >| 7!
+&*-,&.1& "$4-55(-&#$.5!812 N 7!
"$4-B(=-, B, (4*| RHH# (D (-&H#$.514%8&H#,I$-1- =H$H, &1 >I 7!
+&* -, &.518:;- /$5,(.*I$.3!$-C(#,5A%* F G
"$4-B(=-,B, (4*I*E*5&%!*(I5'$#& N 7!
"$4-B' $#&I*E*58&%!* (I5'$#&!$. 310121 I (HIHE&* - &) N 7!
1#&3,/5,(1\ J(#!5,9€5,%$-/A&/);(,.5:%,C#$5, (! N 21
"$4-5106(3&-*1&B&.5!-(C1*5$.3$#3,R$5, (.1#((5!/$
$.$-E*1 >| 7!
+&* -,&.512: KB (#$CEB.31J,-&*E*5&Yo* N 7!
L,54$5,(.$-1$'$#&.&*F N 7!
ST;&#,%8&.5%-1&.B #(.%&.5 N 7!
"$4-51 *(-$5,(.:/(.,.&%&.51Y-(/$-1%$.$C&Y%E&!5 N 7!
H($3E$-$./&! 6! 7!
O*E./A#(.EIll(B&#-$! N 7!
M, &HSHIA,/$-1&T&I45,(.1%(3&-*1$.31*/A&34-,.C 6! G
+4.5,%&ILE*5&%* | L/$-.C:(;5,%,®5,(.1(JV (%%4.,/$5,(.* ! 6! 7!
8&% (#E%$.$C&%&.B.3 I-(/$-,5EI*/A&34-, IC N 7!
M&5&#(C&.&,5EZI*/A&3H-,.C N 21
" & TH#$,&3%&IAS., *%4$8.(38!-&B&- F 21

5. Application

Perspectives and Co

Standing at the beginning of the road to exascale, application communities that are highly motivated to

- Design Vehicles

take that road are well aware of the challenges configtittem. Many of the applications for which

exascale systems will be built exist today in hpghrformance implementations. But all of them will have

to be rewritten substantially, in terms of data structures, algorithms, and possibly even mathematical
formulations; any new applications under development should be formulated from the start with exascale
in mind. As applications custodians and exascale customers, we respond by considering how particular

61

application$l so-calledco-design vehiclesor CDVs, aftetthe principal new programming paradigm in
the exascale reginfewill migrate to the exascaldlere we summarie several factors that we believe are
key to exascale success for application communifiesthenpresent the concept of CDMdescribe

some of their issues, limitatiorsnd requirement&nd give the first examples of what we hope wilbbe
diverse portfolio of CDVs that can help drive thestack development process and start producing
exascale science at the earliest posglbte.

5.1 From Here to Exascale: An Application Community View

The application leaders who have been informing the development of the IESP roadmap over the past
year recognize a certain disconnect between the planning effort the IESP has initiated andrhstate

of major science applicationSpecifically, d¢hough the shared goal is to enable exascale science on
exascale systems by the end of the decade, the reality tedgbnly a scant few applications can
successfully exploit the power of cunteand emerging petascale systems. The difficulties involved in
finding the support and recruiting the interdisciplinary teaseded to create such leadiedge

applications is, no doufgpart of the explanation for this disconnect. But these same dliisuperhaps

in even higher degree, will confront the communities aiming toward exascale.

At the same time, participating application representatives have expeeskandesire for exascale
computational power in order to make fundamental progrets®inrespective areas. The sources of this
desire are largelintrinsic to the process of scientific exploration: scientists want to resolve their models
at their full, ratural range of length or timtg accommodate physical effectglwgreater fideliy, to

create models with degrees ofddom in all relevant dimensiors, better isolate artificial boundary
conditions or better approh realistic levels of dilution, toombine multiple complex models solve
inverse problems, or penfm data assimiltion,to perform optimization or contr@ndto quantify

uncertainty and make statistical estimates with orders of magnitude more accuracy

The computational obstacles to achieving these goalsaaayet@ quantify for some applicatiorssich as
QCD, cosmology, andseismic inversionwhich arealreadyscaling extremely well anexperiencing
processing bottlenesk The situation is hardés quantify but equally important for less uniform
applicationge.g., reservoir monitoringyith complex geometry, adépity, andmultiple phases with
different physicsSuch differences between application groups make it clear that the former group will
not be able to adequately proxy for the latter in terms of definistaEk requirements.

But some common obstacleshish are bound to become more prominent on the road to exascale, are
already appearing in the experience of many groups. At the level of hardware architecture, for example,
the most commonly envisioned path to exascale is thousandfold-ecoamat 1GHz each, within a

tightly coupled network of abodtmillion such nodes. However, memory bandwidth is already limiting
todayOs low core count nodes to less than 10% of peak on misttaws, whose kernels offer little

cache reuse (e.g., stencilavpionsor sparse matvecs). Processors are cheap, small in chip area
(compared to memory), and relatively low in power, so there is no harm in having them in excess most of
the time; but the opportunities for exploiting the main new source for performangedemonstrated for
most applications. At the much higher and more abstract level of interdisciplinary research, while there
are opportunities for combining todayOs individually tugpability simulations into more complex
simulations, there is no silveullet for merging the data structures of the separate applications.
Moreover, given the current state of software infrastructure, the data copying inherent in the code
coupling will likely prevent exploitation of the apparent concurrency opportunities

Suwveying such experiences in the light of projections by the IESP community about the probable path to
exascale, we have identified the following items as keys to success for many application communities:

I Programming modelPrior to possessing exascale haadey apficationsgroups can prepare
themselves by exploring new programming models on rtang and heterogeneous nodes.

62

Attention to locality and reuse is valuable at all scaledwill produce performance paybacks

today and in the future. New algoritsrand data structures can be explored under the assumption
thatFLOPs are cheap and moving data is expensive. Considering 1pigedsion algorithms and
using lower precision wherever possible can also reduce bandwidth pressure.

I Data I/O: Many communitiesire already strugilg to cope with a growing deluge of data, and
this data flood presents both tremendous opportunities and challengasple terms, an
exascale machine, once the data is loaded up, ipatadBytefast store, with lots of processdos
graze over it. We expect that there willlbany new and exciting applications to take advantage
of such storagdpr example data mining in climate modelirmndastrophysics. Such
applications can begin to be explored today in miniature on petascajmters with 300
terabytesBut it is widely agreed that the IRDreading data in and writing data out for analysis,
checkpointing, visualization, ef¢.is already a bottleneck for some applications and is likely to
become one for many fields as data questiescalate.

I Fault tolerance Applications people reluctantly recognize that fault tolerance is a shared
responsibility. It is too wasteful of I/O and processing cycles to handle faults purely automatically
through checkpoint/restart. Different types of faults may be handled diffexey/s, depending on
theconsequences evaluated by scientific impact. For example, application developers and users
can orchestrate strategic, minimal working set checkpoints.

I Reproducibility Applications people realize that #étvel reproducibility isunnecessarily
expensive most of the timAlthough scientific outcomes must be runtimeéependenand
machineindependent, we have no illusions aboutiitel reproducibility for individual pairs of
executions with the same inputs. Since operands magdessed in different orders, even
floating-point addition is not commutative in parallel and on homogeneous hardware platforms. A
new feature in the context of -tesign, with an emphasis on low power (fealtage switching),
is that lack of reproducibily may emerge for many other (hardwdi@Esed) reasons. If
applications developers are tolerant of irreproducibility for their own redsams for validation
and verification through ensembjethen this has implications for considering less expensive,
less reliable hardware.

5.2 IESP Application Co-Design Vehicles

Co-designvehiclesare applications that providargets for, andeedback tpthe softwareesearch,

design and developmergfforts in the IESPThese are required because there are severableogaths

to exascalgwith many associated design choices along the WMag earliest realizations will include

some of todayOs terascale or petascale applications that have a clear need for exascale performance and
are sufficiently well understood thtite steps required to achieve it can be mapped-iN's are

accordingly a key part of the exascale design and development pidoess/er, the specific domain
applications themselves are not necessarily the scientific or societal drivers for developing exascale
capabilities.

A CDV must satisfy the following criteria:

1. ltis a petascale or nepetascale application today with a derstwated need for exascale
performance

2. In progressing to exascale, it should achieve significant scientific goals in an area that is expected
to be a scientific or societal driver for exascale computing, subhss physics, environment,
engineemg, life sciences, or materials. Ideally, the results of the application should be amenable
to experimental validation. This criterion is designed to keafure that the effort elicits the
necessary support from at least one agency

63

3. It should offer realistic and definable set of steps to exascale that can be mapped out over 10
years or less

4. The community developingndsupporting the CDV application should be experienced in
algorithm, softwargand/or hardware developments dralilling to engage in the exaale co
design process. In other words, there must be at least one organized research group, considered to
be among the leaders in the field, that is interested in and willing to work with the IESP

5. The CDV should be modular and open enough to stimulatéethelopment of additional
modules addressing related questions in the area

6. Since the Xstack will need to be stressed along a number of different dimensions, the CDV
should fill a slot in the portfolio of extrenmseale application needed to test all thdsnensions.

The IESP will identify a manageable portfolio of CDVs (e.g., 4 or 5) that span the full range of
anticipated software challengeésshortlist of the most important science drivers in a specific
applicatiort domain will be articulated, anden a description provided of what the barriers and gaps
might be in these priority research directions (PRDB§ primary task for each candidate CDV is to
demonstrate the need for exascale and what will be done to address thé\RPRI)s component dhis
activity is to identify what new software capabilities will be targeted and to what pufoteer, it is
necessary to describe how the associated software R&D can be expected to help the targeted application
benefit from exascale systems, in temhsiccelerating progress on the PRIDAth regard to developing
an appropriate roadmap for this activity, it will be important to identify the timescale on which
involvement in the path to exascale R&D can produce significant exastalded impactThechoice of
CDVs will be informed by the matrix of HPC applications versus software components (Section 5.3).

Different categories of CDVisiclude(1) societally relevant simulations (e.g., climate, patispécific
medicine);(2) more likely readily scaledimulations (e.g., QCD, cosmology3®) dataprocessing

problems (e.g., Square Kilometer Array in Australia, which generates 1 EB/s of data and needs FFTs per
image while data is streamingnd (4)surprise outsidar not currently practical at the taale or

petascale

5.3 Initial Considerations for CDV Analysis

The application participants in the IESP have begun to develop an analysis of the issues, linasitetions
needs to be addressed to make good use of CDVs in-#t@&cK research and developmentoess.

Issues forScaling Up CDVs: The big question in terms of CDV scalability concerns whether the

software for cedesign factors or whether all the inefficiency, over time, involves data copies at interfaces
between the components. In selecting CDVligpfions to move toward exascale, in a stagedesign
process, types that need to be examined include the following:

¥ Weakscaling applications, up to distributetemory limits and/or proportional to the number
of nodes

¥ Strongscaling applicationgeyond distributegnemory limits and/or proportional to cores
per node/memory unit

¥ Applications whose workflow scales, proportional to the number of instances (ensembles)
and/or in integrated en-end simulation

Limitations to Be Explored by CDVs:

64

¥ Strong scaling algorithms may be limited in terms of sufficient cegaieed parallelism
andmay encounter problems with load imbalance due to irregular task/data size; bulk
synchronous algorithms dnmillion nodes are not currently tolerant to load atdmce worse
than one part per million for a synchronous task.

¥ For acceptable singleode performance, compilgenerated code for hybrid/multicore may
be limited Linear algebra kernels typically come with autotunBgt for nonstandard linear
algebra kenels, we will need the autotuning tools, not just their output.

Needs to Be Addressed by CDVs:

¥ CDV developers need tools to generate dorsaiecific languages and to provide for
powerful sourceo-source transformations; to enhance composability inraodenable new
science and expand developer and user communities (which irdetie=sasingcomplexity
as we go to exascale); to write performapoetable code (retargetable) that can extend the
effective lifetime of code over generations of hardware;tarichplement domahspecific
frameworks that both provide solutions of significant HPC problems and are interoperable, so
asto facilitate collaboration in an increasingly multidisciplinary future.

¥ Expanded or new programming modate nededthat movemore of the burden of
managing the scheduling of computation and placement of data to runtime; expand
intrinsically fault tolerant programming models to be relevant to a broader class of
algorithms;andincrease the interoperability of programming mod€ag, MPI, Cilk,
HPCS, etc.) that we already have.

¥ CDV developers mustnderstand the design space tradiis associated with options for
power consumption and resilience, taking into account the nature of expected faults,
including common signaled faulta@ especially silent faults.

5.4 Representative CDVs

To provide specific examples of CDVs that conform to the selection criteria, we focus herenmhthe
energyphysic§QCD and thelasmaphysicgfusionenergysciencesareasl|t should not be inferred that

these are the highest priority applications in the pa#xascale portfolioThe IESP is considering a

rangeof applications as CDVs, including simulations with special relevance to vitally important problems
(e.g., climate change, patiespecific medime), and applications that involve extremely diatensive
analysis (e.g., the Square Kilometer Array in Aust)alile expect to recruit more CDVs as IESP

partners in 2010 in order to stress all critical aspects of titack.

5.4.1 High Energy Physics/QCD

Simulations of QCD, the theory of the strong interaction between quarks and thavase the basic
building blocks of hadrons, have played a pioneering role in the development of parallel and high
performance computing since the early 198@slay, lattce QCD codes are among the fastest
performing and most scalable applications on petascale sydterosigh 30 years of efforts to control all
sources of numerical uncertainty and systematic errors, the currerdgfdtaart is that fully realistic
simulations are possible and startitogprovide results for a range of quantities needed by the
experimental program, relating to the masses and decays of hadrons, with uncertainties gpéhecisw
level. Expected discoveries at the LHC will drive the neméxtend these simulations to other quantum
field theories that might describe new physics underlying electroweak symmetry breaking.

Lattice QCD already has a long track record of acting as a.Sp¥cifically, it meets all of the above
criteria for exasale cadesign

65

Lattice QCD codes sustain mutéraflops performance today and appear capable of scaling
linearly through the petascale ranfibey are computémited, specifically demanding a balance
between compute and -gaff-node memory access spegsis that scientific progress requires the
highest possible sustained performangerder to deliver realistic and sufficiently precise
results for the range of quantities needed by todayOs experiments, lattice sizes must at least
double, increasing theomputational cost by a factor of more than 1@@n larger lattices will
open up more hadronic quantities to fipsinciples computation and require performances well
into the exascale range.

As lattice QCD codes sustain myigtaflops the originalgoal of the fieldl to solve QCD at the
few-percent level for many of the simplest properties of haditomi#i be achievedNot only will

this be a major milestone for theohytit will also enable experimesito identify possible
discrepancies with the Stdard Model and, hence, clues to new physdicapproaching

sustained exaflops, sufficiently large lattices will be employed to extend these computations to
multi-hadron systems, permitting nuclear physics to be computed also from first principles
Dependhg on what is discovered at the LHC, setaldexascale simulations may help explain
electroweak symmetry breaking.

The pathway to early exascale performance for QCD requires developing multilayered algorithms
and implementations to exploit fully (hetemwous) orthip capabilities, fast memory, and

massive parallelismOptimized singlecore and singkehip complex linear algebra routines,

usually via automated assembler code generation, and the use ofpréxéddon arithmetic for

fast memory access anff-chip communications, will be required to maintain balanced
compute/memory access speeds while delivering maximum perfornTaiesance to and

recovery from system faults at all levels will be essebggluse athe long runtimesin

particular, usef accelerators and/or GPGPUs will demand algorithms that tolerate hardware
without error detection or correctionhe international nature of the science will demand further
development of global data management tools and standards for shared data.

The lattice QCD community has a successful track record-design, extending over 20 years
and three continents: for example, the QCDSP and QCDOC projects imitee Statesthe

series of APE machines in Europe, and@&&RCS in JaparNotably, design feates of QCDOC
influenced IBMOs Bluene In all cases, QCD physicists were involved in developing both the
hardware and system softwaligpically, these projects resulted in systems that achieved
performances for QCD comparable to the best that could be achieved at the time from
commercial systems. The community has also agoaesh international metadata standard,
QCDML.

As a CDV, lattie@ QCD has already been adopted by IBM for stress testing and verification of new
hardware and system software. Other crmgting outputs from a QCD CDV are likely to include
performance analysis tools, optimizing compilers for heterogeneous micropmc@sschanisms for
automatic recovery from hardware/system errors, paralletpggformance 1/O, robust global file
systems and data sharing tools, and new stochastic and linear solver algorithms.

5.4.2 Plasma Physics/Fusion Energy Sciences

Major progress imagnetic fusion research has led to IRER multi-billion-dollar burning plasma
experiment supported by seven governments (EU, Japan, US, China, Korea, Russia, and India)
representing over half of the worldOs populatanrently under construction in Cadahe, France, it is
designed to produce 500 milliavatts of heat from fusion reactions for over 400 seconds with gain
exceeding 10thereby demonstrating the scientific and technical feasibility of magnetic fusion energy
Strong research and developmprdagrams are needed to harvest the scientific information from ITER to

66

help design a future demonstration power plant with a gain.oA@&mnced computations at the petascale
and beyongdin tandem with experiment and thepaye essential for acquiringdtscientific understanding
needed to develop whole device integrated predictive models with high physics fidelity.

As a representative CDV, tlfiesion energy scienceBES area meets the criteria for exascaledesign:

I FES applications currently utikztheleadershigomputing &cilitiesat ORNL andArgonneas
well as advanced computing platforms at LBMEmMonstrating scalability of key physics with
increased computing capabilitfwo high-performance computingES topics with significant
scientificimpact were identified at the major DQRorkshop orGrandChallengesn FES &
Computing at the Extreme Scale (April 2000gh physics fidelity integration of muphysics,
multiscale FES dynamics and burning plasmas/ITER physics simulation capability

I A productive FES pathwagf over 10 years can be readily developed for exploitation of exascale
This includes carrying out experimentallglidated confinement simulations (including
turbulencedriven transport) and demonstratke ability to include hiber physics fidelity
components with increased computational capabilitys is needed for both of the areas
identified as PRDgwith the following associatelarriersandgaps:

o While FES applications for macroscopic stability, turbulent transporé phgsics
(where atomic processaseimportant),and otherhave demonstratedt various levels
of efficiency, the capability of using existing LCFs, a major challenge is to
integrate/couple improved versions of lasgmale HPC codes to produce an
experimentallyalidated integrated simulation capability for the scenario modeling of a
whole burning plasma deviseich as ITER.

o New simulations of unprecedented aggregate flogtimigt operations will be needed for
addressing the larger spatial and longer eneapfinement time scales as FES enters the
era of burning plasma experiments on the reactor.doal@ands include dealing with
spatial scales spanning the small gyroradius of the ions to the radial dimension of the
plasmas (i.e., an order of magnitude greater resolution is needed to account for the larger
plasmas of interest such as ITER) and with terapscales associated with the major
increase in plasma energy confinement time (~1 second in the ITER device) together
with the longer pulse of the discharges in these superconducting systems.

I With regard to potential impact on new software developneaat) science driver for FES and
each exascalappropriate application approach currently involves the application and further
development of current codes with respect to mathematical formulations, data structures, current
scalability of algorithms and kers (e.g, Poisson solves) with associated identification of
bottlenecks to scaling, limitations of current libraries used, and OcomplexityO with respect to
memory, flops, and communicatidm addition key areas being targeted for significant
improvemaet over current capabilities include workflows, frameworks, verification and
validation methodologies including uncertainty quantification, and the management of large data
sets from experimentendsimulations As part of the aforementioned ongoing FES
calaborations withthe LCFs, assessments are moving forward on expected software
developmental tasks for the path to exascale with the increasingly difficult challenges associated
with concurrency and memory access (data movement approaches) for neweneteusg
architectures involving accelerato®verall, new methods and exaseedéevant tools can be
expected to emerge from the FES application donVith respect to potential impact on the
user community (usability, capability, etc.), the two FES PR@ed earlier will potentially be
able to demonstrate how the application of exascale computing capability can enable the
accelerated delivery of much needed modeling tddis timescale imvhich such impact may be

67

felt can be briefly summarized as follevior the FES application: 10 to pétaflops(2012)for
integrated plasmaoreedge coupled simulatiorandl exaflop (2018)for whole-system burning
plasma simulations applicable to ITER

5.4.3 Strategic Development of IESP CDVs

The technology drivers for CD®pplications argfor the most partconnected to advanced architectures
with greater capability but with formidable software development challefigesieed to address
concurrency issues and to deal with complex memory access/data movement chaltezigesding
heterogeneous architectures with accelerasoegpected tarive new approaches for scalable algorithms
and solversFor risk mitigation, alternative R&D strategies need to be developed for choosing
architectural platforms capable of effectivaddressing the PRDs in the various domain applications
while exploiting the advances on the path to the exadBaleeficial approaches includee following

I Developing effective collaborative alliances involviegmputer sciencandapplied mathematics
(e.g., following the SciDAC model)

I Addressing msscuttingchallenges shared by CDV applications atkasughidentification of
possible common areas of software development, appropriate methodologiesfication and
validation and uncertaiy quantification, and the common need for collaborative
interdisciplinary training programs to deal with the critical task of attracting, training, and
assimilating young talent

5.5 Matrix of Applications and S oftware Components Needs

The matrix below wasreated to stimulate and inform thinking about CDVs. Clearlycé#ince areaand
engineering areas that contain potential CD@esdsomethingn all thesoftwareareasput for the
purposes of this exercise we tried to sort out areas of emphasis fapgdichation domain, i.ewhere we
expect the major challenges will be for that domBkwr. example, all areas need some 1/O, but the ones
checkedvere deemed to neetnsiderablé/O, based on the problems that exist todakewise, the
areas that havess software maturitye(g.,healthandenergy) havemore Xs in the programming,
languagesand debugging columns.

szUz |[pur v |33 ™ 20U |gIoeC =T =] 030 wow Z>0
_ 2552 B235 (2228 | B8 B35S | 528 | 528 | 88w | 53 | 8BS
Science and 203 5887 BeR2 | B8E |5392 | 75 | 285 | 588 | Tag | 258
i i gog £325 8 €35 892 8252 8 S S3e | €83 2= S8 3
Engineering Subareas w25 [B385 (3 3% | 322 [g2a | 3 & | B23 2 & “gg
Disciplines 8>3 308 2 2 288 | =38 | 2 3| g8s 2)
<8 | 385 | | & |7 &
¥ Nano
science
Material s
_ ¥ Structu_ral X X X X X X X
Science Analysis
¥ Electronic
Structures
¥ Alternative
Fuels
¥ Nuclear
Fission
Ener ¥ Combustion
ergy X X X X X X X
Sciences ¥ Nuclear
Fusion
¥ Solar
¥ Energy
Efficiency
Chemistry ¥ Molecular X X X X

68

Dynamics

69

Science and §§§§ I‘gggé gg §§ gé)% g%%% ggg ggg g% %gg ggg
Engineering Subareas §§§ %‘35% EE §‘§§ 3%%? 8 2 ;gg 93 | 2535 | 3&2
Disciplines 225 [ZoB |2 2 228 | =88 | B 5| g8% 3 g3
<2 352 2 B L
¥ Climate
¥ Weather
¥ Earthquake/
Earth Seismic X X X X X N X « «
Systems ¥ Subsurface
Transport
¥ Water
Resources
¥ Dark Energy
¥ Galaxy
Formationfn
teraction
Astrophysics i
ASUOEO%Y Y f\:/lci):rrc:]\;\(/:ave X X X X X X X
Background
Radiation
¥ Supernova
¥ Sky Surveys
¥ Genomics
¥ Protein
. . Folding
gg;aslﬁeg%lsufe ¥ Evolution X X X X X X X
¥ Ecology
¥ Organism
Engineering
¥ Drug Design
¥ Contagious
Disease
¥ Radiation
g(?i?elrtwr(]:es relatedHealth X X X X X X X
¥ Medical
Records
¥ Comparative
Genomics
N_uclear and i g:u?rinos
High Energy X X X X X X
Physics ¥ Acc_elerator
Design
Fluid ¥ Internal
Dynamics ¥ External X X X X X X

6. Perspectives on Cooperation between IESP and HPC

Vendor Communities
In order b meet the many challenges involved in programming exascale machines, the components of the
X-stack that the IESP community aims to produce must entrain a whole software ecodgstensize

of the ecosystem grows, vendors will be increasinglyivated to leverage and contribute to the
communityOs efforts to satisfy that ecosystemOs requireimemntier toachieve this goahowever,

70

several challenges must be overcome, includindinding a suitable structure to agree on common APIs;
(2) producing a coordinated, interlocked effort between vendor partners, the IESEentiic

communities, and HPC facilitiewith meaningful deliverables and time tablé¥);balancing the time

needed for research and exploration to overcome the exasedles with the need to produce timely,
concrete implementations that can be integrated by the vendor partners and used by the IESP and
scientific communities to run on the exascale systems{4@rfthding appropriate development, support,
intellectual poperty, and funding models that allow vendor partners to incorporate software produced by
the community, that can be supported by the community and funded by the interested government
agencies.

Recent discussions among vendors as part of the IESP phasesproduced a number of considerations
that need to be taken into accaufe first expand on the likely challenges that need to be overcome for
vendor partners to utilize the research and development efforts of the IESP comWentitenpresenta
taxanomy that describes the different models of development and support for software that might
structure cooperation within the-3tack ecosystenNext we describe the requirements and methods of
such softwareWe conclude with a set of recommendatidoselp guide both the IESP community and
vendors to effectively collaborate to produce kvl of ecosystenthis collective effort needs

6.1 Challenging Issues for Vendor/Community Cooperation

Common APIs: It is critical to agree on common and open ARlse devéopment and evolution of

APIls must occur in a way that produces the kind of stability that IESP vendor partners need, but must also
be flexible enough to incorporate early research and exploration of alterndfisitieg to achieve

agreement through slemoving, formal standards processes may not be timely enough to meet the
expected needs of-Btack softwareThere are components of the system software that need to take into
account hardwarspecific characteristics or that can be better tuned by expgldiirdwarespecific
featuresBecause multiple vendor partnevdl be working on such lowevel aspects, it becomes even

more important to the community to find a methodology to agree on common APIs, at least for the
exascale effort.

X-Stack CoDevelopmant: ThelESP community, vendor partners, and HPC facilitestwork

together to produce the software stabke IESP community®s message about the importance of vendor
participation should be communicated clearly and repeatédiyappears that the comunity is going to
fund all or most of the components of thestack, vendor partners will find it challenging to achieve the
levels of software testing expertise and resources required to work with their results.

Research Time vs. Development TimeResearch and early investigation are necessary in addressing
exascale software challengétsis also crucial that when the hardware becomes available, the software is
sufficiently matureFor the interim system, targeted for 2015, time is short for nyadkétisions on high

level issues (e.g., is programming model X the correct one for exasdbie ®hportant that funding
agencies realize the urgency in producing solicitations and making funding available for the early
investigations.

Support: Providing sufficient, orgoing support for the components may be the largest nontechnical
challenge facing the HPC communi§oftware researchers have typically not provided the level of
support provided by vendor partneasd few research groups provide theclesf support needed for

HPC facilities to meet their traditional quality of service requireménigher, to date there has not been

a strong track record for the community coordinating with vendor partners tightly enough so the vendor
partners could ifade software components in their product plarorder b produce the rich software
ecosystem the >$tack needs, a novel structure needs to be put in place to address these support issues.

71

6.2 Taxonomy of Development/Support Models

Thevendor partners, fuigg agencies, and research and development commungy havesach

software component in the-Xack categorized in terms of two key characterist{@dwhois expected to
develop/supply the component, a2 who is expected to maintain and supportdt@ponentThe

figure below shows the four quadrants defined by these characteristics and how some of the component
areas of the >tack sort into them

Q4 Community Developed / Provider Supported 03 Community Developed / Community Supported

Programming Models Other (UPC, ARMCI)

Frameworks

Application Element: Algorithms

Application Element: Data Analysis and Visualization
Application Support: Scientific Data Management

Q1 Provider Supplied / Provider Supported

Operating Systems Could be co-developed
Runtime Systems

Q2 Provider Supplied / Community Supported

External Environments
Compilers Different models work

Numerical Libraries Different models work
Debugging Tools Different models work

1/0 Systems

Systems Management
Low-level [RAS, power control, boot) vendor developed
Higher-level resource mgmt., security, performance co-developed

Programming Models Industry Standard (OpenMP, MPI, COF)

Compilers Vendor Optimized

Elements in Xstacksoftware roadmapategorized relative to supplier/support criteria from the send
perspectiveCrosscuttingareadl resilience, power management, performance optimization, and
programmabilityj\ are not shown since they affect components at all layers and which may fall in differen
guadrantsAs components are designed, the project awsbouldclearly identify the appropriate category fol
the component.

In Q1, thesystemprovider both supplieand supports the componefhis is the typical model of system
providers who supply a proprietary software statbwever, the softwareomponents in this quadrant
may also be open source, commusdreloped, caleveloped, and/or thirdarty software components
for which the system provider also provides supgaorthis context, then, OsuppliesO basically means
Otests and packages fae #ystem.QLinux and MPI are often in this category for vendor partners.

In Q2, thesystemprovider supplies a communiyeveloped componerdand the community provides the
support In this case, the system provider builds the component and suppliesistéaners for each
installation Althoughthe system provider does not maintain or support the compahemty be one of
the contributors for that component in the commuisTSC, ScaLAPACK, angccare examples from
this quadrant.

In Q3, the componeris developed/supplied and supported by the commuiHity facility and/or end
user obtains, builds, and installs the software on the system and works with the community for
maintenance and suppdfor example, NWCHEM angnusoftware are in this quadrian

In Q4, the component is developed by the commubhity the system provider is expected to be
responsible to fully maintain and support the compartexdamples in this quadrant are typically unique
to specific customer$rom the perspective of the \@or partners, this quadrant is an undesirable

72

guadrant because, while they are expected to take responsibility for maintenance and support, they do not
have enough control to sufficiently influence the component development/support community or control
thedestiny of the componentonsequently, facilities have difficulty obtaining the quality of support they

are interested in.

From the system providerOs perspective, components in Q1 and Q2 are appropriate as RFP requirements
However, only components in @te appropriate as strong acceptance crit€ha Q3 is extremely

difficult for the system providers and should be avoided whenever poSdilgieeare no restrictions on

Q4 from the vendor partners, but there may be issues regarding the expectdtoitisied managers

and scientific users, and some of these issues may require alternative resource and/or funding streams.

While the system providers may participate in developing software in any of the quadrants, it is likely that
system providers wilbe more active in the development of components in Q1 and Q2

6.3 Requirements and Methods

The goals of the IESP effort challenget onlythe technical capability of the HPC community but also

the social and economic models tha community uses to creatiategrate, testand support software

for emerging extremscale system$olicies surrounding open source software offer one illustrafion

the challengeOn one hand, any government funding organizations require that software developed
with public furds be available as open sourdewever, the absolute requirement for all software thus
created to be open source makes it difficult for the providers of systems and the facilities deploying and
supporting them as scientific tools to meet the quality ofiee objectives that the user community has
come to expecPulling in the other direction, however, is the recognition that the HPC community is
relatively small, while many hands are needed to craft viable solutighe time availableThis

recognitbn is one of the primary reasons for trying to harness the entire international community to the
effort. To engage everyone, there needs to be a shared and open way to work Bgétheery nature,
proprietary code tends to thwart geahd reduce theumber of hands that can contribute.

To describe this tension and evaluate the tradeoffs, we define the requirements that science users have for
the large Xstack software development effort, many of which we believe can be met by open software

The goalsand expectations of computing center management, the software research copandritg

scientific application users include the following:

I The communitydoes not want to be limited to proprietary solutiaver which they have little or
no control Thefeatures and improvements that have to wait for commercial providers to supply
them can be problemati©ften these providers have priorities not always aligned with the
HPC/exascale community, making improvements and/or corrections less timely argl/or les
functional than needed.

I Many aspects of exascale have a degree of uncertainty (risk) that strongly suggests having
alternatives for risk mitigatioand being prepared to replasemponents ofhe softwarestackin
a timely manner.

I Software developers, mging from application developers to system tool and feature developers,
needwell-defined andtonsistenAPlsto which they can write code

I Governmenbrganizations need to be abldd¢werage theiinvestmentsf public fundsn
software development, $bat results in one project or area can be reused for the multiple
exascale hardware targets and for other@xascale projects or areas as well.

I Governmenbrganizations need to be ableptmtect their investmentsf public fundsn software
developmenfrom being lostIn the past, significant publicly funded software (and hardware)
investments have been lost when companies go out of busingdssnggo other business
models.

73

I Applicationsteams will be working to create highly scalable applications that run effectively on
multiple system target3 heseapplication teams want to havemssplatform, or easily portable,
programming and development environmtenincrease productivity.

I Exagale systems will be advanced scientific instruments. As part of the scientific process,
scientists need tiknow how thedevices work foscientific reproducibilityand accuracy
Treating the system software as a black box run by code that cannot beezkamierified does
not accomplish this goal.

System poviders have their own requirements, some of which were expressed in the above provisioning
and support graphid@he primary requirement is that system providershadteld responsible or liable

for the correctness or performance of software over whichdbheayt have controProviders want the
freedom, based on their business models, to use open source and other software components to meet
requirements at their own riskor example, they may de@do offer an open source component but
budget the effort to provide the necessary support thems€laake other hand, providers should not be
held accountable for software they do not conolund business practices also dictate that providers be
able to potecttheir proprietary informationd.g.,low-level systemhardware design), as has historically
been the case.

The facilities that will deploy the exascale systems and help scientists make efficient use of the systems
have traditionally made botxplicit and implicit quality of service commitments to users and have
accepted quality of service expectations/metrics from the funding agencies. Just like vendor partners,
facilities are hesitant to rely on casual support agreements (e.g., open souwese)\e problems and

make improvements in software that are critical to their success, particularly if they do not have the
resources to provide their own full support for the comparkeatilities, as surrogates for government
stakeholders, also havedasure the systems they deploy arehthst valugossible.

While there are overlaps, the methods below capture, to first order, the primary niethasiseloping
and supporting software

I Opensourceis defined, in the current context, as wiadlrsoftwae isprovided as buildable
source code, with licenses that alléwil rights for othersto change and ughe software without
infringement to anyone®s intellectual prop&typport for the software may be casual to
nonexistent. An example is the Psctipting language.

I Opensource with formal suppoiis an enhancement of the open source in waitkoftware is
buildable sourceas abovehut in which there also existésformal or in some casqsaid,
arrangement for suppaof the softwareAn exampe is Lustre.

I Opensoftwareshould be differentiated from open source. OQpfwareO refers oftware
whereall APIs are published and supportaad are not changed arbitrarily or unduly, but the
buildable source code is not released with rights tamuseodify. Opensoftware allows software
developers to create software that interfaces with other component (including application codes)
and allows components to be replaced as long as the component has the same API.

I Collaborativedevelopmenis a methodhat extends to both joint development gwidt
ownershipof the software IRvith a formal agreementefining roles, responsibilities, and rights
These agreements typically define a way to providgaing support as well as original
developmentAn exanple isthe HPSSCollaboration.

I Co-developmenis a method that captures mae hoc arrangements for joidévelopment and
supportefforts Co-development may cexist with open software and/or open source. Examples
in this category includ®PICH and the ACTS toolkit.

74

I Proprietarydevelopments thefunded or unfunded developmeand support by an organization
that retains the IP right&or exampleDARPA HPCS efforts fund vendor partners to create
software that in some cases remain proprietary.

I Proprietarydevelopment with code escrasvthefunded or unfunded developmearid support
where the provideretains IP but formallagreedo release akboftwarewithout restriction if
certain conditions occur, such as the providaring the business

Does not want to be
limited to a fully
proprietary solution

Open API

Protect GovOt
X X X ? ? ?

investment
X X X X X

Facility

Best Value

Scientists need to
how their devices
work for
reproducibility

Not held responsible
for components that
they do not have
control over

75

Table 1DMatrix mapping theequirements foexascale softwar® methods ofoftwaredevelopment and support.

Table 1characterieswhich softwaredevelopment and support methods address which requirements of
computing center managers, software research and development groups, and scientific application groups
An X means the method substantially addresses the requieantestion mark means it may, with

some restrictions, address the requiremextdank space means the method does not support the
requirement.

This table shows that theollaborativeDevelopmentapproach addresses all the requirements, because
there s shared responsibility and defined roldere important, there is shared ownership of the
software, so if one partner drops out of the relationships, other partners can c@pengource with
Formal Support addresses all the requirements exceptrfiegting the system provider from proprietary
details if the software components have to interface to the hardware system at the losvdelmi{

level interconnect featuresh this case, releasing the code may implicitly release the proprietary
hadware details.

6.4 Software Testing

So far, for the sake of simplicity, we have focused on software component development andlsupport

any large software development projdaiwever integration and testing (I&Tnustbe an integral and
well-planned effarto ensuresuccess, often taking at least as much effort and time as the actual code
developmentForthe X-stackproject the situation is complicatealy the fact thamachines at this scale

are unique resources, so they are the only place where testing can be done. As a consequence, all exascale
and preexascale systems must, as part of their design, support the communityd&dor partners are

expected to take thegponsibility for I&T in Quadrants 1 and 2 and are concerned thatdheegther

explicit or implicit unfunded requirements for I&T in Quadrants 3 an@rtthe other hand, with a few
exceptions, funders and facilities do provide sufficient resources tioedappropriate level of I&T

without a vendor or facility incurring penalties.

In the case of »stack, with the limited number of systems planned, the aggressive increase in scale, and
the potential radical departureshiardwareandsoftware the IESP @admap must have a credible plan
with clear responsibilities for integration and testing at expanding scales.

6.5 Recommendations

Discussion between the vendor partners, funding agencies, facilities, and IEBE soientific
community has yielded tHellowing recommendations

1. The IESP community should produce a methodology for categorizing software components into the
development and support model they will fit. This should be broken down by each planned component,
for example, OS, runtime, prognaing models. It is also possible that different instantiations within a
component may be categorized differenBgr example, within programming models, MPI and OpenMP
may be treated different than UPC. Therefore, this process may need to iterateatmgaimngful
understanding of the -¥tack creation and support plan. The result should be a Oliving documentO and be
refined as more information is learned about each of the components.

2. Interlocking (between vendor partner, community, facility) mileegshould be clearly definedn

order to work effectively together and provide a mechanism for vendor partners to have confidence
including Ghot invented he@components into their product plan, these milestones will allow the vendor
partner, as the pduct roadmap progresses, to ensure the requirements are on track to meet the required
schedule. As illustrated in the requirement versus method grid (Sec. 6.3);dbestopment model, with

joint ownership and responsibility with a formal agreement, st requirements.

76

3. The communityshouldproduce a model that allows for components to become mature before inclusion
into the product stack. Linux, for example, was not supported by vendor partners until it had been
existence for at least ten yeavghile this amount of leaime may not be needed for all components, a
mechanism for allowing components to mature before inclusion is important.

4. As part of meeting cdevelopment goals, the roadmap commitieeuldinteract with the application
groupsto identify key application characteristics, early enough to enable the characteristics to influence
the hardware and software design tradeoffs. These characteristitende used as input into the

overall software architgure, requirements, and dgsj andhardware architecture teams can also use
them

5. Funding agencies should apply resources to integration, testing, maintenance, and support as well as
development of Xstack software. Enabling the community to effectively deploy and utilize tstack
components requires a ntrivial investment of resourceBunding agencies, aware of this fact, need to

be prepared to help underwrite that investment. Furthermore, there must be a model in place that allows
the community to support that softwaregéod rule of thumb is that for every dollar dedicated to

researching and developing a component, there should be a dollar dedicated for testing, maintenance, and
support Insuring the success of the IESP effort will require a well planned program ofaesour

integration and testing.

6. Open source licenses from nprofits and publicly funded efforts should bendor friendly The

pedigree of the code should track with contributor agreements, clearly indicating that the code is free of
IP entanglements frote start The license should b@onviralOin order to allow the software to be
included into vendor commercial produdts fact, this model should be encouraged, since it facilitates a
more sustainable software base, not just for exadwatidor other efforts as well.

7. The community should start working early on to draft IP agreements with the goal of producing the
bulk of the IP agreement that can be agreed to across countries, agencies, vendor partners, regions,
componentsand so fath. This is likely to need an even longer lei@de than the technology, so starting

as soon as possible is highly recommended, since it will resolve many important questions and issues
earlier rather than later.

7. IESP Organization and Governance

Initial discussions of a lonterm organization and governance model for the IESP took place at the April
2010 meeting in OxfordA relatively large group of representatives from participating governmental
agencies, including representatives from the US (DOE, NBIRRA), European Commission, and Japan
(MEXT, RIKEN), as well as national funding agencies from the UK (EPSRC, BBSRC, STFC), France
(ANR, GENCI), Germanyand the Netherlands (NOW), considered potential governance models in
various aspect8elow we preserdome of the main considerat®oon which the views of the participants
converged.

7.1 Importance of a Business Case

Taking seriously the possibility of formally organizing the IESP and providing it with ongoing support
means, first and foremost, acknowledgthg validity of basic questions about the need for such an
organization: Is the research and development of software for exascale systems really something new,
especially as compared to the road to petaflop/s computing? Why is a separate projectior progra

needed? What would happen if the funding agencies were t@¥éyy bothetthis regulates itself?0
Deliberations about IESP governance began with such questions, which were pursued in something of a
OdevilOs advocateO spirit. Although we concludeithénatis, indeed, something new and uniquely
challenging about the expected path to exascale software infrastructure, so that the IESP will require more
formal organization and ongoing funding, it was also cleardbatimenting a business cdse thiswill

77

be essential in order to involve the funding agencies and provide them with the policy resources necessary
to enable them to raise the funding. The costs and benefits for do@mgraon(i.e., international) project
will have to be made clear.

Contentsf a business case typically contain budget estimates, timelines, expected actors, roadmaps,
risks, and contingency plans. It is believed that each funding ageificieed a general business case, but
should also have room for aspects in the businegstbasare of local importance to the country of the
funding agency. Thiapproach willensure compatibility of business cases between the funding agencies.
Another importanaspecis the scope of IESHhere is someguestion for example, as to whethdret

IESP will end with the delivery of the first exascale system or whether it represents a distinctly new
phasewhich happened to begin just last year, of a continuous movement that will extend into the future.

A third important aspect that should be ezkbed by a business case is what can be called a tree or
pyramideffect Show that parts that are developed in IESP could and would be leveraged by a much
broader user community several years after deployment. Such effects make funding agency and vendor
interest stronger.

7.2 Application of Current Funding Mechanisms

Oneaspect to be addressisdhe need for coordination of funding between the funding agencies (both
within and among nations), once the business case has been validated. Currently, soméutygiag of
calls can be identified, ranging from loose to much more regu(ettesely coupled, coordinated, joint, or
in a wellspecified legal framewojkEither coordinated or joint funding modelsconsidered the best
options for the IESP. For exampicoordinated call might have characteristics such as the following:
issued at the same tinteaving thesame text proposal, amcludingseveral subjects within one call
Based on experience, it certainly seems feasible to have a few funding agemkirg tegether to issue
a coordinated calbut the larger the set of funding agencies participating, the better the coordination
between the efforts will be. In this regard, an important aspect is the alignnibesobjects of the calls
to the priorites of the funding agencies. Coordinated or joint call models should enable such appropriate
alignments.

7.3 Governance Model

One of the key items of a working governance model for the IESP is the fact that the agencies funding the
effort will need to remain igontrol of what they fund, whyand whenWe believe that IESP should

deliver to the funding agencies the analysis and planning resources that they will require to make such
coordinated solicitations regarding exascale software infrastructure possiblapMmoach might be to

have two separate tasks (and the entity to perform these taskdgfariegand onemonitoring The

defining task would constitute the software roadmap and the breakdown of this roadmap into components,
including timelines, procutde elementsand deliverables. This roadmap would need to take the business
case as input and could be viewed as a practicalgblexecution for IESP. The monitoring task would

monitor progress on the roadmap, but across disciplines, bpaderagencylomains, and would report

and advise the funding agencies. The funding agenoidd then decide on continuation of funding

based on progress. Periodic updates and contingency plans will be needed. We view an approach based on
such defining and monitorintasks as a plausible and realistic way to move forward.

7.4 Vendor | nteraction

An important aspect of sustainable relationships between vendors and funding agencies is the
classification of software components with respect to ownership and ongoing <efdaongupport.

Vendor perspectives on these issues are discussed inid&eadion 6. From an agency perspective, in

the ideal situation, each software component of tista¥k would be opesource. Thispproactwas

strongly advocated, if not firmly poseds a requirement by the funding agencies represented in our initial
discussions. But common sense dictates that some relaxation of this requisdimgmtbably be

78

appropriate if the software comes closer to the individual hardware components (evgaréy because

these components are likely to involve elements proprietary to the vendor. We also remark that this issue
is not directly relevant if a vendor is not funded for the development of that component. The open source
discussion has at least twackts First, if X-stack research and developmentto be funded byhe

government with public funds, funding agencies take the view that the results of such publicly funded
research results should be open (source) to the people who paid for it. Seeanely that scientific
experiments must be described in all detail and be reproducible is now being expressed by the community
with increasing strength; to achieve this goal in research that uses exascale systems, all details of the
software will have tde known. This requirement is independent of the IP rights discussion. It is more a
matter of principle with respect to what constitutes valid scientific research. Licensing and IP issues are
obviously related to practical questions about how valid s@ienmethods can be implemented and

pursued in the coming era of exascale science. Although all details on these matters are not available yet,
it clearly makes sense to try to anticipate the consequences of different rule getglandccordingly,

atan early stage of the IESP project. We plan to work with the results from the discussions of IESP
vendor partners (Sec. 6) to begin fashioning such a plan.

7.5 Timeline

The timeline for the process will depend on the end point(s), the funding models anctthef@ational
and international cooperation aadyanization within the IESHhe end point(s) will be a function of the
long-term requirements and goals of the different funding a@gerivolved in the procesat this time

the first planned deployme&nare anticipated to l®y the US. Department of Energyrhis first
deployment sets the initial timelinerfthe overall software process.

In addition, there is clearly a need for a test and integration process entermediate scale facility to
prepae for the initial deployment, whicis likely to occur in 2015Given these two points in the process
and the current statuse canconstruct an initial timiéne for the overall proces3he early part of the
process and the final $éacan be reasonabtiefined The intermediate stages are still subject to
considerable uncertainty.

Thetimeline below does not address other important issues about which discussions have already begun:
security (rely on communitdeveloped software components), testing and integration facilities, practical
aspects of calesign and funding of multiple appaches for similar software componefitiese items

are slated for further development and will be included in future timelines.

Timeframe Targets and MilestonesDPerformance Optimization

¥ |Initial missionbased software solicitatiofly DOE NNSA and Office of
Sciencdn thefall, with an expected emphasis on conservative technology
choices

2010 . . . : o
¥ Creation of software roadmap, including requirements based prioritization,
critical paths, funding and software clearinghouse, support models dedeloj
among the group of international agencies involved
2011 ¥ |Initial solicitations for software development programs based on the softw:
roadmap for international partners
201213 ¥ Initial software deliveries and evaluatfn

¥ Delivery of finalcomponents of software stack, integration and testing in

201415 process on neexascale platforms

¥ Early technology delivery of a migixascale system of ~200 PF with a minin
but functional software stack

79

201617

K K

Ability to handleobservation of hundreds ofillion-way concurrency

Characteriation ofperformance of exascale hardware and software for
application enablement

201820

Initial delivery of full system with a full, integrated software stack
Ability to handle observation of billicivay concurrency
At-scale testing, debugginand early scientific runs

2020

K| K K K

Exascale systems in production

80

8. Bibliography

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

"Architectures and Technology for Extreme Scale Computing," Department of Energy,
San Diego, CA, Scientific Grand Challenges Workshop Series, pp. Decerh@e2@09.
"Challenges in Climate Change Science and the Role of Computing at the Extreme
Scale," Department of Energy, Washington, DC, Scientific Grand Challenges Workshop
Series, pp. 98, November7 2008.
http://www.er.doe.gov/ascr/ProgramDocuments/Docs/ClimateReport.pdf

"Crosscutting Technologies for Computing at the Exascale," Department of Energy,
Washington, DC, Scientific Grand Challenges Workshop Series, pp. 99, Febduary
2009.http://extremecomputing.labworks.org/crosscut/CrosscutWSFinalReptDraft02.pdf
"Discovery in Basic Energy Sciences: The Role of Computing at thergtScale,"
Department of Energy, Washington, DC, Scientific Grand Challenges Workshop Series,
pp. August 1315, 2009.

"Exascale Workshop Panel Meeting Report," Department of Energy, Washington, DC,
Scientific Grand Challenges Workshop Series, ppJd6uary 120, 2010.
http://www.er.doe.gov/ascr/ProgramDocuments/Docs/TrivelpieceExascaleWorkshop.pdf
"Forefront Questions in Nuclear Science and thke RbHigh Performance Computing
Summary Report Summary Report,” Department of Energy, Washington DC, pp.
January 2&8, 2009.

http://extremecomputing lavorks.org/nuclearphysics/PNNL_18739 onlineversion_opt.p
df.

"Fusion Energy Science and the Role of Computing at the Extreme Scale," Department of
Energy, Washington, DC, Scientific Grand Challenges Workshop Series, pp. 245, March
18-20, 2009.

http://extremecomputing.labworks.org/fusion/PNNL _Fusion_final19404.pdf
"Opportunities in Biology at the Extreme Scale of Computing," Department of Energy,
Chicago, IL, Scietific Grand Challenges Workshop Series, pp. 69, Augusit9, 2009.
http://www.er.doe.gov/ascr/ProgramDocuments/Docs/BiologyReport.pdf

"Science Based Nuclear Energy &yss Enabled by Advanced Modeling and Simulation
at the Extreme Scale," Department of Energy, Washington, DC, Workshop Report, pp.
94, May 1112, 2009 http://www.er.ae.gov/ascr/ProgramDocuments/Docs/SC
NEWorkshopReport.pdf

"Scientific Challenges for Understanding the Quantum Universe and the Role of
Computing at Extreme ScaleSummary Report," Department of Energy, Menlo Park
California, Scientific Grand Chahges Workshop Series, pp. 129, DecemkEt,2008.
http://extremecomputing.labworks.org/highenergyphysics/reports/HEPreport101609 fina
l.pdf.

"Sdentific Grand Challenges in National Security: The Role of Computing at the
Extreme Scale," Department of Energy, Washington, DC, Scientific Grand Challenges
Workshop Series, pp. 190, Octobe8,62009.
http://www.er.doe.gov/ascr/ProgramDocuments/Docs/NNSAGrandChallengesReport.pdf

81

[12]

[13]

[14]

[15]

[16]

[17]

M. L. Garcia and O. H. Bray, "Fundamentals of Technology Roadmapping " Sandia
National Laboratory, pp. 34, 1997.
http://www.sandia.gov/PHMCOE/pdf/Sandia’'sFundamentalsofTech.pdf

P. M. Kogge and et al, "ExaScale Computing Study: Technology Challenges in
Achieving Exascale Systems," DARPA Information Processing Techniques Office,
Washington, DC, pp. 278, September 28, 2008.
http://users.ece.gatech.edu/~mrichard/ExascaleComputingStudyReports/exascale final_r
eport 100208.pdf

National Research Council Committee on the Potential Impact ofEEighComputing

on lllustrative Fields of Science and Engineering, "The Potential Impact ofEigh
Capability Computing on Four lllustrative Fields of Science and Engineering,"
Washington, DC, pp. 142, 2008.

V. Sarkar, et al., "ExaScale Software Study: Software Challendgedreme Scale
Systems," DARPA Information Processing Techniques Office, Washington DC., pp. 159,
September 14, 2009.
http://users.ece.gatecdie~mrichard/ExascaleComputingStudyReports/ECSS%20report
%20101909.pdf

V. Sarkar, W. Harrod, and A. E. Snavely, "Software challenges in extreme scale
systems,'Journal of Physics: Conference Sengs 012045, 2009.

R. Stevens, T. Zacharia, aHd Simon, "Modeling and Simulation at the Exascale for
Energy and the Environment Town Hall Meetings Report,” Department of Energy Office
of Advance Scientific Computing Reserach, Washington, DC, pp. 174, 2008.
http://www.sc.doe.gov/ascr/ProgramDocuments/Docs/TownHall.pdf

82

